Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét từ giác AMNB ta có:
BM | AC => góc AMB =90
AN | BC => góc ANB =90
=> AMB = ANB
Mà: điểm M và N cùng nhìn 1 cạnh AB
=> AMNB nội tiếp => góc ABM = góc MBN
Hay: sđ cung EC =sđ cung DC
=> đpcm
b, Xét tứ giác MCNH , ta có:
góc HMC =90 và góc HNC =90
=> góc HMC + góc HNC =180
=> Tứ giác MCNH nội tiếp => góc HMN = góc HCN
Mà: góc HMN= góc NAB (cùng chắn cung BN)
Hay gócNAB = góc BCD (cùng chắn cung BD)
Từ trên suy ra: góc HCN = góc NCD
Xét 2 tam giác: tg HCN và tg NCD
góc HNC= góc CND = 90
NC chung
góc HCN = góc NCD
=> tg HCN = tg NCD (gcg)
=> HN=ND =>đpcm
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
a: góc INC+góc IMC=90+90=180 độ
=>IMCN nội tiếp
b: Xét ΔIMA vuông tại M và ΔINB vuông tại N có
góc MIA=góc NIB
=>ΔIMA đồng dạng với ΔINB
=>IM/IN=IA/IB
=>IM*IB=IN*IA
c: góc AHI=góc ACB
=>góc AHI=góc AIH
=>AH=AI
a: góc INC+góc IMC=90+90=180 độ
=>IMCN nội tiếp
b: Xét ΔIMA vuông tại M và ΔINB vuông tại N có
góc MIA=góc NIB
=>ΔIMA đồng dạng với ΔINB
=>IM/IN=IA/IB
=>IM*IB=IN*IA
c: góc AHI=góc ACB
=>góc AHI=góc AIH
=>AH=AI
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE