Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)
\(\Rightarrow A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
Lại có:
\(B=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
\(\Rightarrow B=\frac{1}{101}.\left(\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{101}{299.400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\)
\(\Rightarrow\frac{A}{B}=\frac{1}{299}:\frac{1}{101}\)
\(\Rightarrow\frac{A}{B}=\frac{101}{299}.\)
Vậy \(\frac{A}{B}=\frac{101}{299}.\)
Chúc bạn học tốt!
Ta có:
A = \(\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)
= \(\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
= \(\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
B = \(\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
= \(\frac{1}{101}\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
= \(\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\)
= \(\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)+\left(\frac{1}{102}+\frac{1}{103}+..+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+..+\frac{1}{299}\right)+\left(\frac{1}{300}+\frac{1}{301}+..+\frac{1}{400}\right)\right]\)
= \(\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+..+\frac{1}{400}\right)\right]}{\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}=\frac{1}{\frac{299}{\frac{1}{101}}}=\frac{1}{299}\cdot\frac{101}{1}=\frac{101}{299}\)
Sửa đề: \(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+...+\frac{1}{299\cdot400}\)
____________________________________________
\(A=\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+...+\frac{1}{101\cdot400}\\ A=\frac{1}{299}\left(\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+...+\frac{299}{101\cdot400}\right)\\ A=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\\ A=\frac{1}{299}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}\right)\right]\left(1\right)\)
\(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+...+\frac{1}{299\cdot400}\\ B=\frac{1}{101}\left(\frac{101}{1\cdot102}+\frac{101}{2\cdot103}+...+\frac{101}{299\cdot400}\right)\\ B=\frac{1}{101}\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\\ B=\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\\ B=\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\\ \frac{A}{B}=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{1}{299}\cdot101=\frac{101}{299}\)
\(A=\frac{\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}}=\frac{1}{154526}\)
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{34}{103}\)
b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)
Đặt biểu thức trong ngoặc là A ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)
\(A=1-\frac{1}{1999}\)
\(A=\frac{1998}{1999}\)
Thay vào biểu thức (*) ta có :
\(\frac{1}{2000.1999}-\frac{1998}{1999}\)
\(=\frac{1}{3998000}-\frac{1998}{1999}\)
\(=\frac{-3995999}{3998000}\)
c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)
\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\frac{100}{101}\)
\(=\frac{-50}{101}\)
_Chúc bạn học tốt_
cho thêm điều kiện x,y thuộc Z nữa nhá
\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
\(\frac{3}{x}=\frac{y-1}{3}\)
\(\Rightarrow x.\left(y-1\right)=9\)
Lập bảng ta có :
x | 1 | 9 | -1 | -9 | 3 | -3 |
y-1 | 9 | 1 | -9 | -1 | 3 | -3 |
y | 10 | 2 | -8 | 0 | 4 | -2 |
Vậy ( x ; y ) = { ( 1 ; 10 ) ; ( 9 ; 2 ) ; ( -1 ; -8 ) ; ( -9 ; 0 ) ; ( 3 ; 4 ) ; ( -3 ; -2 ) }
mấy bài còn lại làm tương tự
a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )
\(\frac{1}{2}\) - \(\frac{7}{12}\) < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\)
\(\frac{-1}{12}\) < x < \(\frac{1}{8}\)
Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .
\(N=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
=>\(N=\frac{13860}{41580}+\frac{10385}{41580}+\frac{8316}{41580}+\frac{11880}{41580}+\frac{9240}{41580}+\frac{7560}{41580}\)
=>\(N=\frac{61251}{41580}\)
=>N ko phải là số nguyên (đpcm)
HỌC TÔT :)
đợi 1 năm nữa rùi mk giải cho!
Ta có:
101A-299B=0
suy ra:101A=299B
suy ra: \(\frac{A}{B}\)=\(\frac{101}{299}\)
Vậy A/B Không phải số nguyên