\(\frac{1}{2}\)- (\(\frac{1}{3}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )

     \(\frac{1}{2}\) - \(\frac{7}{12}\)               < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\) 

                   \(\frac{-1}{12}\)           < x < \(\frac{1}{8}\) 

Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)

\(\Rightarrow x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)

\(\Rightarrow x=\frac{231}{80}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)

=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)

=> \(\frac{13}{36}x+\frac{8}{45}=0\)

=> \(\frac{13}{36}x=-\frac{8}{45}\)

=> \(x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)

=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)

=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)

=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)

=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)

30 tháng 5 2018

a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{34}{103}\)

b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)

Đặt biểu thức trong ngoặc là A ta có :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)

\(A=1-\frac{1}{1999}\)

\(A=\frac{1998}{1999}\)

Thay vào biểu thức (*) ta có :

\(\frac{1}{2000.1999}-\frac{1998}{1999}\)

\(=\frac{1}{3998000}-\frac{1998}{1999}\)

\(=\frac{-3995999}{3998000}\)

c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)

\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)

\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{-1}{2}.\frac{100}{101}\)

\(=\frac{-50}{101}\)

_Chúc bạn học tốt_

18 tháng 7 2019

                                                                                   Bài giải

                                   Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)     ;    \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)        ; ..... ;             \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)        \(^{\left(1\right)}\)

                        Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\)          ;         \(\frac{1}{3^2}>\frac{1}{3\cdot4}\)        ; ..... ;               \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)         \(^{\left(2\right)}\)       

Từ \(^{\left(1\right)}\) và \(^2\) 

       \(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\)      \(\left(ĐPCM\right)\)

18 tháng 7 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

              \(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)  

              \(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)

              \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

              \(=1-\frac{1}{9}=\frac{8}{9}\)

\(\Rightarrow A< \frac{8}{9}\left(1\right)\)

Ta có:    \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

                 \(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)

                 \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

                 \(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A>\frac{2}{5}\left(2\right)\)

Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)

Các bạn nhớ k đúng mình nha (nếu đúng)

31 tháng 5 2018

cho thêm điều kiện x,y thuộc Z nữa nhá

\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

\(\frac{3}{x}=\frac{y-1}{3}\)

\(\Rightarrow x.\left(y-1\right)=9\)

Lập bảng ta có : 

x19-1-93-3
y-191-9-13-3
y102-804-2

Vậy ( x ; y ) = { ( 1 ; 10 ) ; ( 9 ; 2 ) ; ( -1 ; -8 ) ; ( -9 ; 0 ) ; ( 3 ; 4 ) ; ( -3 ; -2 ) }

mấy bài còn lại làm tương tự

11 tháng 6 2019

đáp án

a) 2/581/1677

b)-29/30

11 tháng 6 2019

a) \(\frac{5}{9}:\left(\frac{5}{12}-\frac{1}{11}\right)-\frac{5}{9}:\left(\frac{-1}{5}-\frac{2}{3}\right)\)

\(\frac{5}{9}:\left(\frac{55}{132}-\frac{12}{132}\right)-\frac{5}{9}:\left(\frac{-3}{15}-\frac{10}{15}\right)\)

\(\frac{5}{9}:\frac{43}{132}-\frac{5}{9}:\frac{-13}{15}\)

\(\frac{5}{9}\times\frac{132}{43}-\frac{5}{9}\times\frac{-15}{13}\)

=\(\frac{5}{9}\times\left(\frac{132}{43}-\frac{-15}{13}\right)\)

=\(\frac{5}{9}\times\frac{2361}{559}\)( Đến đây bạn tự quy đồng mẫu nha)

=\(\frac{3935}{1677}\)

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100

\(\frac{3}{4}x-\frac{2}{3}.\left(\frac{3}{5}x-\frac{6}{5}\right)=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{3}{4}x-\frac{2}{5}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\left(\frac{3}{4}-\frac{2}{5}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\left(\frac{15}{20}-\frac{8}{20}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{7}{20}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{1}{7}-\frac{4}{5}=\frac{2}{9}x-\frac{7}{20}x\)

\(\frac{5}{35}-\frac{28}{35}=\left(\frac{2}{9}-\frac{7}{20}\right)x\)

\(\frac{-23}{35}=\left(\frac{40}{180}-\frac{63}{180}\right)x\)

\(\frac{-23}{180}x=\frac{-23}{35}\)

\(x=\frac{-23}{35}:\frac{-23}{180}\)

\(x=\frac{-23}{35}.\frac{180}{-23}\)

\(x=\frac{180}{35}\)

Vậy \(x=\frac{180}{35}\)

Chúc bạn học tốt