Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng cách đánh giá quen thuộc
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)
Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Ta cần chứng minh được
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :3
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow\)\(a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow\)\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-1\right)^2+\left(b-1\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)
Áp dụng BĐT Bunhiacopski
ta có \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(=\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
Lúc đó \(\left(a+c\right)^2+\left(b+d\right)^2\)\(\le\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Xét\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)
Áp dụng bất đẳng thức Cô-si với 2 số dương ta được:
\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\sqrt{a^2+1}.\frac{1}{\sqrt{a^2+1}}}=2\)=>\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)(đpcm)
Dấu "=" xảy ra khi a=0
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)
\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)
\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)
\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)
Do đó ta có đpcm.
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)
\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)
\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)
\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)
\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)
Do đó ta có đpcm.
Ta có a>=0 ; b>=0
=> √a >=0 ; √b >=0
<=> (√a -√b)2>=0
<=> a-2√ab + b>=0
<=> a+ b>=2√ab
Vậy bất đẳng thức được CM
Bài này đơn giản thôi bạn, nhưng quan trọng là nó dài nên mình ko có hứng làm chi tiết:)
Ta có: \(VT-VP=\frac{\left(1019a-15b^2-1004c\right)^2+18117\left(b^2-c\right)^2}{1019}\ge0\)
Tự xét dấu bằng nốt:)
Đề sai à bạn? Vì với a = 0, phân thức đại số trên bằng \(\sqrt{2}< 2\).
\(\frac{a^2+a+2}{\sqrt{a^2+a+2}}\ge2\)
\(\Leftrightarrow\sqrt{a^2+a+2}\ge2\)
\(\Leftrightarrow a^2+a+2\ge4\)
\(\Leftrightarrow a^2+a-2\ge0\)
\(\Leftrightarrow a^2+2a-a-2\ge0\)
\(\Leftrightarrow a\left(a+2\right)-\left(a+2\right)\ge0\)
\(\Leftrightarrow\left(a+2\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le-2\\a\ge1\end{matrix}\right.\)
Đề bài sai bạn ơi, không chứng minh được, chỉ tìm được ra khoảng của x thôi