\(a+b+c\ge\dfrac{a-b}{b+5}+\dfrac{b-c}{c+5}+\dfrac{c-a}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}>=2\cdot\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\)

\(\Leftrightarrow\left(a+b\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}\cdot2\cdot\sqrt{\dfrac{1}{ab}}=4\)

b: \(a+b+c>=3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>=3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Do đó: \(\left(a+b+c\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

31 tháng 3 2017

\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)

\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)

Cái này đúng vì a, b, c không âm

Dấu = xảy ra khi \(a=b=c=0\)

5 tháng 4 2017

ko biết đâu vì em mới học lớp 5 thôi!

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

5 tháng 11 2017

Sửa câu a:

(x - 2)2 - 36 = 0

(x - 2 - 6)(x - 2 + 6) = 0

(x - 8)(x + 4)= 0

\(\Leftrightarrow \begin{bmatrix} x - 8= 0 & & \\ x + 4 = 0 & & \end{bmatrix}\)

\(\Leftrightarrow \begin{bmatrix} x = 8 & & \\ x = - 4 & & \end{bmatrix}\)

pn bỏ dấu ngoặc bên phải nhé

Vậy x = 8; x = - 4

5 tháng 11 2017

2:

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Rightarrow\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}=\dfrac{a+5-a+5}{b+6-b+6}=\dfrac{10}{12}=\dfrac{5}{6}=\dfrac{a+5+a-5}{b+6+b-6}=\dfrac{2a}{2b}=\dfrac{a}{b}\)

Từ đó suy ra \(\dfrac{a}{b}=\dfrac{5}{6}\)

\(\RightarrowĐPCM\)

Câu 2:

Để C là số nguyên thì \(\sqrt{x}-1+5⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;5\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

29 tháng 11 2017

a)

Gọi 3 phần của số A lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)\(a^2+b^2+c^2=24309\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a^2}{\left(\dfrac{2}{5}\right)^2}=\dfrac{b^2}{\left(\dfrac{3}{4}\right)^2}=\dfrac{c^2}{\left(\dfrac{1}{6}\right)^2}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)

\(\dfrac{a}{\dfrac{2}{5}}=32400\Rightarrow a=32400.\dfrac{2}{5}=12960\)

\(\dfrac{b}{\dfrac{3}{4}}=32400\Rightarrow b=32400.\dfrac{3}{4}=24300\)

\(\dfrac{c}{\dfrac{1}{6}}=32400\Rightarrow c=32400.\dfrac{1}{6}=5400\)

Vậy số A được chia thành 3 phần lần lượt là \(12960;24300;5400\)

29 tháng 11 2017

b) Đặt: \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a+c}{b+c}=t\)

Ta có: \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}=t^2\)

\(\dfrac{a}{c}.\dfrac{c}{b}=t.t=\dfrac{a}{b}=t^2\)

Ta có đpcm

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui