\(\ne\) 0 thoả mãn : \(\dfrac{a}{b}=\dfrac{b}{c}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

31 tháng 5 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Lần lượt thay a và c vào các ý cần chứng minh, áp dụng theo tính chất phân phối giữa phép nhân đối với phép cộng (hay phép trừ) để tính ở mỗi vế.

Mẫu: a) Ta có : \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

13 tháng 8 2017

a)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)\(\dfrac{a-b}{a}=1-\dfrac{b}{a}=1-\dfrac{b}{bk}=1-\dfrac{1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=1-\dfrac{d}{c}=1-\dfrac{d}{dk}=1-\dfrac{1}{k}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

12 tháng 12 2022

a: a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)

b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)

d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)

14 tháng 4 2017

chắc là 1080

14 tháng 4 2017

Giải:

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{14}{22}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{7}{11}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}\\\dfrac{c}{11}=\dfrac{d}{13}\\\dfrac{e}{13}=\dfrac{f}{17}\end{matrix}\right.\)

\(M=a+b=c+d=e+f\)

\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}=\dfrac{a+b}{7+11}=\dfrac{M}{18}\left(1\right)\\\dfrac{c}{11}=\dfrac{d}{13}=\dfrac{c+d}{11+13}=\dfrac{M}{24}\left(2\right)\\\dfrac{e}{13}=\dfrac{f}{17}=\dfrac{e+f}{13+17}=\dfrac{M}{30}\left(3\right)\end{matrix}\right.\)

Kết hợp \(\left(1\right);\left(2\right)\)\(\left(3\right)\) suy ra:

\(M\in BC\left(18;24;30\right)\)

Mặt khác \(M\) là số tự nhiên nhỏ nhất có 4 chữ số

Nên \(M=1080\)

Vậy \(M=1080\)