Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{\left(a+5\right)+\left(a-5\right)}{\left(b+6\right)+\left(b-6\right)}=\frac{\left(a+5\right)-\left(a-5\right)}{\left(b+6\right)-\left(b-6\right)}\)
\(\Rightarrow\frac{2a}{2b}=\frac{10}{12}\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)
b. Có hai cách giải bài này. Mk sẽ giải cách đặt k nếu bạn muốn bt cách còn lại thì nhắn tin cho mk mk gửi cho
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Rồi từ đây ban thế a =bk;c=dk vào \(\frac{a^2+b^2}{c^2+d^2}\)đáp án sẽ là bằng d ( d là một số bất kì)
CX thế vào \(\frac{ab}{cd}\)nó cx sẽ ra đáp án là d nhé bạn
LƯU Ý: BẠN KO ĐC GHI d MÀ BẠN PHẢI TÍNH RA NHÉ VD thế vào \(\frac{ab}{cd}\)nó ĐƯỢC \(\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck,b=dk\)
Ta có \(\frac{ab}{cd}=\frac{ck.dk}{cd}=\frac{k^2.c.d}{c.d}=k^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\frac{c^2k^2+d^2k^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)
Từ 1 vá 2 suy ra \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Từ \(a+b+c=6\Rightarrow\hept{\begin{cases}a+b=6-c\\b+c=6-a\\a+c=6-b\end{cases}}\)
\(\Rightarrow A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)
\(=\frac{6-a+5}{a+1}+\frac{6-b+4}{b+2}+\frac{6-c+3}{c+3}\)
\(=\frac{11-a}{a+1}+\frac{10-b}{b+2}+\frac{9-c}{c+3}\)
\(=-1+\frac{12}{a+1}-1+\frac{12}{b+2}-1+\frac{12}{c+3}\)
\(=-3+12\left(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwrarz dưới dạng Engel ta có :
\(A\ge-3+12.\frac{\left(1+1+1\right)^2}{6+\left(a+b+c\right)}=-3+12.\frac{9}{12}=6\) (đpcm)
Vì \(a:b:c=\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)
\(\Rightarrow\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\Rightarrow\frac{a}{\frac{2}{5}.60}=\frac{b}{\frac{3}{4}.60}=\frac{c}{\frac{1}{6}.60}\Leftrightarrow\frac{a}{24}=\frac{b}{45}=\frac{c}{10}\)
Theo t)c của dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{576}=\frac{b^2}{2025}=\frac{c^2}{100}=\frac{a^2+b^2+c^2}{576+2025+100}=\frac{24309}{2701}=9\)
\(\Rightarrow a^2=9.576=5184\Rightarrow a=72\left(a>0\right)\)
\(b^2=9.2025=18225\Rightarrow b=135\left(b>0\right)\)
\(c^2=9.100=900\Rightarrow c=30\left(c>0\right)\)
\(\Rightarrow A=a+b+c=72+135+30=237\)
Nếu \(a-b,b-c,c-a\inℤ^+\)
\(\Rightarrow\frac{|a-b|}{3}=\frac{|b-c|}{5}=\frac{|c-d|}{7}\)\(=\frac{a-b}{3}=\frac{b-c}{5}=\frac{c-a}{7}\)\(=\frac{a-b+b-c+c-a}{3+5+7}=\frac{0}{15}=0\)
\(\Rightarrow\)\(a=b=c=0\left(đpcm\right)\)
Nếu\(a-b,b-c,c-a\inℤ^-\)
\(\Rightarrow\frac{|a-b|}{3}=\frac{|b-c|}{5}=\frac{|c-d|}{7}\)\(=\frac{-a+b}{3}=\frac{-b+c}{5}=\frac{-c+a}{7}\)\(=\frac{-a+b+\left(-b\right)+c+ \left(-c\right)-a}{3+5+7}=\frac{0}{15}=0\)
\(\Rightarrow\)\(a=b=c=0\left(đpcm\right)\)
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1);(2) => 1 < M < 2 => đpcm
\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)
\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)
Cái này đúng vì a, b, c không âm
Dấu = xảy ra khi \(a=b=c=0\)
ko biết đâu vì em mới học lớp 5 thôi!