Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(27x^3+\frac{y^3}{8}\)
\(=\left(3x\right)^3+\left(\frac{y}{2}\right)^3\)
\(=\left(3x+\frac{y}{2}\right)\left(9x^2-\frac{3xy}{2}+\frac{y^2}{4}\right)\)
b) Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
c) Ta có: \(x^{m+2}+x^m\)
\(=x^m\cdot x^2+x^m\)
\(=x^m\left(x^2+1\right)\)
d) Ta có: \(x^{k+1}-x^{k-1}\)
\(=x^{k-1}\cdot x^2-x^{k-1}\cdot1\)
\(=x^{k-1}\left(x^2-1\right)\)
\(=x^{k-1}\cdot\left(x-1\right)\left(x+1\right)\)
f) Ta có: \(\left(a+b-c\right)\cdot x^2-\left(c-a-b\right)x\)
\(=x^2\left(a+b-c\right)+x\left(a+b-c\right)\)
\(=x\left(a+b-c\right)\left(x+1\right)\)
e) Ta có: \(\left(a-2b\right)^{3n+1}\)
\(=\left(a-2b\right)^{3n}\cdot\left(a-2b\right)\)
n) Ta có: \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
1/
A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)
⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0
⇔ A = \(\dfrac{2}{x-2}\) = 0
⇒ x = 2 (loại) ⇒ pt vô nghiệm
Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)
\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)
Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp
\(\Rightarrow a-1⋮2\)
Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2
=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn
Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.
Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))
\(\Rightarrow\) $a + b + c + d$ là hợp số.
a: Xét tứ giác AIDK có
góc AID=góc AKD=góc KAI=90 độ
nên AIDK là hình chữ nhật
=>góc AIK=góc ADK=góc DAI=góc B
=>IK//BC
b: Để IK=1/3BC thì AD=1/3BC=1/3*2*AM=2/3*AM
=>D là trọng tâm của ΔABC
Lời giải:
Có: \(\left\{\begin{matrix} a+b=c+d\\ ab+1=cd\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b)^2=(c+d)^2\\ 4ab+4=4cd\end{matrix}\right.\)
\(\Rightarrow (a+b)^2-(4ab+4)=(c+d)^2-4cd\)
\(\Leftrightarrow (a-b)^2-4=(c-d)^2\)
\(\Leftrightarrow [(a-b)-(c-d)][(a-b)+(c-d)]=4\)
Vì $a,b,c,d$ nguyên nên $(a-b)-(c-d); (a-b)+(c-d)$ cũng là số nguyên
Mà $[(a-b)-(c-d)]-[(a-b)+(c-d)]=-2(c-d)$ chẵn nên $(a-b)-(c-d); (a-b)+(c-d)$ có cùng tính chẵn lẻ.
Do đó \(\left[\begin{matrix} (a-b)-(c-d)=(a-b)+(c-d)=2\\ (a-b)-(c-d)=(a-b)+(c-d)=-2\end{matrix}\right.\)
Cả 2 TH thì đều suy ra \(2(c-d)=0\Rightarrow c=d\) (đpcm)