Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
Không mất tính tổng quát,
Giả sử a<b
Ta có: ab=bc => c<b
Ta có: bc=cd => c<d
Ta có: cd=de => e<d
Ta có: de=ea => a>e
Ta có: ea=ab => a>b ( trái với giả sử)
Vậy a=b=c=d=e
=> ba=bc=cd=de=ea
e<a
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
\(a^2+b^2+c^2+d^2=a\left(b+c+d\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2=4a\left(b+c+d\right)\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2=0\)
\(\Leftrightarrow a=2b=2c=2d\)
=>A=\(a+\frac{a}{2}+\frac{a}{2}+\frac{a}{2}=\frac{5a}{2}\)
hàng 3 sử giúp mik hic hic
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2=0\)
<=>(a-2b)2+(a-2c)2+(a-2d)2+a2=0
<=>a=2b=2c=2d=0
=>a=b=c=d=0
=>A=0+0+0+0=0
Lời giải:
Có: \(\left\{\begin{matrix} a+b=c+d\\ ab+1=cd\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b)^2=(c+d)^2\\ 4ab+4=4cd\end{matrix}\right.\)
\(\Rightarrow (a+b)^2-(4ab+4)=(c+d)^2-4cd\)
\(\Leftrightarrow (a-b)^2-4=(c-d)^2\)
\(\Leftrightarrow [(a-b)-(c-d)][(a-b)+(c-d)]=4\)
Vì $a,b,c,d$ nguyên nên $(a-b)-(c-d); (a-b)+(c-d)$ cũng là số nguyên
Mà $[(a-b)-(c-d)]-[(a-b)+(c-d)]=-2(c-d)$ chẵn nên $(a-b)-(c-d); (a-b)+(c-d)$ có cùng tính chẵn lẻ.
Do đó \(\left[\begin{matrix} (a-b)-(c-d)=(a-b)+(c-d)=2\\ (a-b)-(c-d)=(a-b)+(c-d)=-2\end{matrix}\right.\)
Cả 2 TH thì đều suy ra \(2(c-d)=0\Rightarrow c=d\) (đpcm)