Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{}}}}}-1,7\)
\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)
\(=\sqrt{88\sqrt{0,3}}-1,7\)
\(=\sqrt{88.0,54}-1,7\)
\(=\sqrt{47,52}-1,7\)
\(=6,9-1,7\)
\(=5,2\)
2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu
hình như sai rồi bạn ơi, lúc học thì thầy mình giải ra kết quả =1 và ko tính căn ra như thế
\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )
\(b.A>\dfrac{1}{3}\) ⇔ \(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)
⇔ \(3-\sqrt{x}>0\)
⇔ \(x< 9\)
Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?
\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)
⇒ \(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)
\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .
\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .
\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .
\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
\(\Leftrightarrow\sqrt[3]{\dfrac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\dfrac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)
Áp dụng BĐT Cô-si cho 3 số dương, ta có:
\(\Leftrightarrow\sqrt[3]{\dfrac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\dfrac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le\dfrac{1}{3}\left(\dfrac{a}{a+x}+\dfrac{b}{b+y}+\dfrac{c}{c+z}+\dfrac{x}{a+x}+\dfrac{y}{b+y}+\dfrac{z}{c+z}\right)=1\)
\(\sqrt[3]{abc}\le\dfrac{a+b+c}{3}\)
\(\sqrt[3]{xyz}\le\dfrac{x+y+z}{3}\)
\(\Rightarrow\sqrt[3]{abc}+\sqrt[3]{xyz}\le\dfrac{\left(a+x\right)+\left(b+y\right)+\left(c+z\right)}{3}\)
Áp dụng BĐT Cô-si cho 3 số dương (a+x); (b+y); (c+z) , ta có:
\(\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\le\dfrac{\left(a+x\right)}{ }\)
b/A=\(\frac{x-2\sqrt{x}-3-3\sqrt{x}+9}{x-2\sqrt{x}-3}=1-\frac{3\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=1-\frac{3}{1+\sqrt{x}}\)
Vậy 1+ căn x thuốc Ư(3), mà \(\sqrt{x}\ge0\Rightarrow1+\sqrt{x}\ge1\)
Vậy \(1+\sqrt{x}=\left(1,3\right)\)
\(\Rightarrow\sqrt{x}=\left(0,2\right)\) Vì x nguyên nên x=0
\(\Leftrightarrow A=\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}:\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(\Leftrightarrow\frac{1}{1+\sqrt{x}}:\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{1+\sqrt{x}}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{x-9-x+4+\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{x-5\sqrt{x}+6}{x-2\sqrt{x}-3}\)
\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)
\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)