\(\forall a,b,c,d>0\)ta có: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

hi kết bạn nha

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{c(a-c)}+\sqrt{c(b-c)}]^2\leq [c+(b-c)][(a-c)+c]=ab\)

\(\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}\) (đpcm)

Dấu "=" xảy ra khi $a=b=2c$

NV
20 tháng 6 2019

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

a)

Áp dụng bất đẳng thức AM-GM:

\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)

\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)

\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)

Dấu bằng xảy ra khi \(x=1\)

b)

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)

\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)

Dấu bằng xảy ra khi

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)

\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)

Do đó dấu bằng không xảy ra

Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)

Giỏi thế em :v Mới lớp 8 mà đã đỉnh vậy ._.

4 tháng 8 2020

Ta có BĐT: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).

BĐT trên dễ dàng chứng minh được bằng cách sử dụng phép biến đổi tương đương.

Do đó: \(\left(\sum\sqrt{a^2+2bc}\right)^2\le3\left(\sum a^2+2\sum bc\right)=3\left(a+b+c\right)^2\)

\(\Rightarrow\sum\sqrt{a^2+2bc}\le\sqrt{3}\left(a+b+c\right)\)

2 tháng 12 2019

Bình phương 2 vế và biến đổi tương đương là ra

2 tháng 12 2019

Áp dụng BĐT Bunhiacopski

ta có \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(=\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)

Lúc đó \(\left(a+c\right)^2+\left(b+d\right)^2\)\(\le\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

NV
18 tháng 10 2019

\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)

\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)

\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)