Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(24^n:2^{2n}\)
\(=\left(2^3\cdot3\right)^n:2^{2n}\)
\(=2^{3n}\cdot3^n:2^{2n}\)
\(=2^n\cdot3^n\)
\(=6^n\)
1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)
Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)
Giả sử bất đẳng thức đúng với n = k
Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)
Ta cần chứng minh bất đẳng thức đúng với n = k + 1
Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)
<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24
Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)
<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0
<=>1 / [2(2k + 1)(k + 1)] > 0 (4)
Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng
Cộng (1) và (3) được :
1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24
=> (2) đúng
Theo quy nạp => Điều cần chứng minh là đúng => đpcm
Đúng không?
Tìm \(x\) thế \(x\) nào ở đâu trong bài toán vậy em?
Lời giải:
a.
$2n^2+n-6=n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1$ là ước của $6$
Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
b.
Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$
Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$
Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$
Suy ra $p^2-1$ luôn chia hết cho $3$ (*)
Mặt khác:
$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$
$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)
Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.
3²ⁿ = (3²)ⁿ = 9ⁿ
2³ⁿ = (2³)ⁿ = 8ⁿ
Do 9 > 8 nên 9ⁿ > 8ⁿ
Vậy 3²ⁿ > 2³ⁿ
------------
5³⁶ = (5³)¹² = 125¹²
11²⁴ = (11²)¹² = 121¹²
Do 125 > 121 nên 125¹² > 121¹²
Vậy 5³⁶ > 11²⁴
`#3107.101107`
a)
\(3^{2n}\) và \(2^{3n}\)
Ta có:
\(3^{2n}=3^{2\cdot n}=\left(3^2\right)^n=9^n\\ 2^{3n}=2^{3\cdot n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
Vậy, \(3^{2n}>2^{3n}\)
b)
\(5^{36}\) và \(11^{24}\)
Ta có:
\(5^{36}=5^{12\cdot3}=\left(5^3\right)^{12}=125^{12}\\ 11^{24}=11^{12\cdot2}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
Vậy, \(5^{36}>11^{24}.\)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
\(24^n:2^{2n}\)
\(=(2.12)^n:(2^2)^n\)
\(=2^n.12^n:(2.2)^n\)
\(=2^n.2^n.6^n:2^n:2^n\)
\(=6^n\)
\(24^n\)\(:\)\(2^{n2}\)
\(=\)\(\left(2.12\right)^n\)\(:\)\(\left(2^2\right)^n\)
\(=\)\(2^n.12^n;\left(2.2\right)^n\)
\(=\)\(2^n.2^n.6^n;2^n;2^n\)
\(=\)\(6^n\)