Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n^2+5n-13=2n^2+2n+3n+3-16⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5;7;-9;15;-17\right\}\)
mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn
Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4
Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8
Lại có (n + 1) (2n + 1) = 3n + 2
Ta thấy 3n + 2 = 2 (mod3)
Suy ra (n + 1) (2n + 1) = 2 (mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)
Do đó n chia hết cho 3
đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))
\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)
số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)
giờ cần chứng minh \(n⋮8\)
từ cách đặt ta cũng suy ra \(n=b^2-a^2\)
vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)
do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)
từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)
Chj có thê ấn vào phân tìm kiếm đê có đáp án ah
#lâurôi
====ZU====
@EMĐÂY
35 . 18 - 5 . 7 . 28
= 35.18-5.7.28
= 35 . 18 - 35 . 28
= 35 . ( 18 - 28 )
= 35 . ( - 10 )
= -350
D. 24.(16-5)-16.(24-5)
= 24 . 11 - 16 . 19
= 264 - 304
= -30
Nguyễn Minh Tâm đúng rồi nhưng dài thế
1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)
Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)
Giả sử bất đẳng thức đúng với n = k
Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)
Ta cần chứng minh bất đẳng thức đúng với n = k + 1
Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)
<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24
Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)
<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0
<=>1 / [2(2k + 1)(k + 1)] > 0 (4)
Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng
Cộng (1) và (3) được :
1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24
=> (2) đúng
Theo quy nạp => Điều cần chứng minh là đúng => đpcm
Đúng không?