Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\)...\(\times\)1\(\dfrac{1}{2005}\)
A = \(\dfrac{12+1}{12}\) \(\times\) \(\dfrac{13+1}{13}\) \(\times\) \(\dfrac{14+1}{14}\)\(\times\)...\(\times\) \(\dfrac{2006}{2005}\)
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\)...\(\times\) \(\dfrac{2006}{2005}\)
A = \(\dfrac{2006}{12}\)
A = \(\dfrac{1003}{6}\)
Giải:
\(9-3\times\left(x-9\right)=6\)
\(3\times\left(x-9\right)=9-6\)
\(3\times\left(x-9\right)=3\)
\(x-9=3:3\)
\(x-9=1\)
\(x=1+9\)
\(x=10\)
\(4+6\times\left(x+1\right)=70\)
\(6\times\left(x+1\right)=70-4\)
\(6\times\left(x+1\right)=66\)
\(x+1=66:6\)
\(x+1=11\)
\(x=11-1\)
\(x=10\)
\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\)
\(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\)
\(\dfrac{x}{13}=\dfrac{4}{13}\)
\(\Rightarrow x=4\)
\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{3}{7}\)
\(\Rightarrow x=7\)
\(5\times\left(3+7\times x\right)=40\)
\(3+7\times x=40:5\)
\(3+7\times x=8\)
\(7\times x=8-3\)
\(7\times x=5\)
\(x=5:7\)
\(x=\dfrac{5}{7}\)
\(x\times6+12:3=120\)
\(x\times6+4=120\)
\(x\times6=120-4\)
\(x\times6=116\)
\(x=116:6\)
\(x=\dfrac{58}{3}\)
\(x\times3,7+x\times6,3=120\)
\(x\times\left(3,7+6,3\right)=120\)
\(x\times10=120\)
\(x=120:10\)
\(x=12\)
\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\)
\(\left(360-x\right):0,25=400\)
\(360-x=400.0,25\)
\(360-x=100\)
\(x=360-100\)
\(x=260\)
\(71+65\times4=\dfrac{x+140}{x}+260\)
\(\left(x+140\right):x+260=71+260\)
\(x:x+140:x+260=331\)
\(1+140:x+260=331\)
\(140:x=331-1-260\)
\(140:x=70\)
\(x=140:70\)
\(x=2\)
\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\)
\(10\times x+\left(1+4+7+...+28\right)=155\)
Số số hạng \(\left(1+4+7+...+28\right)\) :
\(\left(28-1\right):3+1=10\)
Tổng dãy \(\left(1+4+7+...+28\right)\) :
\(\left(1+28\right).10:2=145\)
\(\Rightarrow10\times x+145=155\)
\(10\times x=155-145\)
\(10\times x=10\)
\(x=10:10\)
\(x=1\)
Đều theo cách lớp 5 nha em!
\(\dfrac{15}{14}\): \(\dfrac{10}{21}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{15}{14}\) \(\times\) \(\dfrac{21}{10}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{5\times3\times7\times3}{7\times2\times10\times5}\) = \(\dfrac{9}{20}\)
5 \(\times\) \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = 1 + \(\dfrac{1}{5}\) = \(\dfrac{6}{5}\)
7 : \(\dfrac{1}{5}\) - \(\dfrac{1}{5}\) = 35 - \(\dfrac{1}{5}\) = \(\dfrac{174}{5}\)
6 + \(\dfrac{1}{5}\): 2 = 6 + \(\dfrac{1}{10}\) = \(\dfrac{61}{10}\)
8 - \(\dfrac{1}{5}\) \(\times\) 7 = 8 - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)
\(\dfrac{15}{14}\) : \(\dfrac{10}{21}\) x \(\dfrac{1}{5}\) = \(\dfrac{15}{14}\) x \(\dfrac{21}{10}\) x \(\dfrac{1}{5}\) = \(\dfrac{9}{4}\) x \(\dfrac{1}{5}\) = \(\dfrac{9}{20}\)
5 x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = \(\dfrac{5}{1}\) x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = 1 x \(\dfrac{1}{5}\) = \(\dfrac{1}{5}\)
7 : \(\dfrac{1}{5}-\dfrac{1}{5}\) = \(\dfrac{7}{1}\) x \(\dfrac{5}{1}-\dfrac{1}{5}\) = \(\dfrac{35}{1}\) - \(\dfrac{1}{5}\) = \(\dfrac{175}{5}\) - \(\dfrac{1}{5}\) = \(\dfrac{174}{5}\)
6 + \(\dfrac{1}{5}\) : 2 = \(\dfrac{6}{1}\) + \(\dfrac{1}{5}\) x \(\dfrac{1}{2}\) = \(\dfrac{6}{1}+\dfrac{1}{10}\) = \(\dfrac{60}{10}\) + \(\dfrac{1}{10}\) = \(\dfrac{61}{10}\)
8 - \(\dfrac{1}{5}\) x 7 = \(\dfrac{8}{1}\) - \(\dfrac{1}{5}\) x \(\dfrac{7}{1}\) = \(\dfrac{8}{1}-\dfrac{7}{5}\) = \(\dfrac{40}{5}\) - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)
Sai Báo Lại Mình Nha!
a/\(x-\dfrac{5}{7}-\dfrac{13}{14}=1\)
\(x=1+\dfrac{5}{7}+\dfrac{13}{14}\)
\(x=\dfrac{14}{14}+\dfrac{10}{14}+\dfrac{13}{14}\)
\(x=\dfrac{37}{14}\)
Vậy \(x=\dfrac{37}{14}\)
b/\(\dfrac{3}{5}+x+1\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+\dfrac{3}{5}+\dfrac{6}{5}=\dfrac{11}{3}\)
\(x+\dfrac{9}{5}=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}-\dfrac{9}{5}\)
\(x=\dfrac{55}{15}-\dfrac{27}{15}\)
\(x=\dfrac{28}{15}\)
Vậy \(x=\dfrac{28}{15}\)
#kễnh
a) \(x-\dfrac{5}{7}-\dfrac{13}{14}=1\)
\(x-\dfrac{23}{14}=1\)
\(x=1+\dfrac{23}{14}\)
\(x=\dfrac{37}{14}\)
b) \(\dfrac{3}{5}+x+1\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+1+\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+\dfrac{9}{5}=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}-\dfrac{9}{5}\)
\(x=\dfrac{28}{15}\)
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot\dfrac{25}{24}\cdot\dfrac{36}{35}=\dfrac{12}{7}\)
= 4/3*9/8*16/15*25/24*36/35
=2*2/1*3 * 3*3/2*4 *4*4/3*5 *5*5/4*6 * 6*6/5*7
= (2*3*4*5*6 / 1*2*3*4*5) * ( 2*3*4*5*6 / 3*4*5*6*7)
=6/1* 2/7
= 12/7
\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
= \(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)
= \(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)
= \(\dfrac{40}{14}=\dfrac{20}{7}\)
\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)
=\(\dfrac{9}{2}+\dfrac{1}{11}\)
=\(\dfrac{101}{22}\)
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)
\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)
\(x=\dfrac{102}{21}=\dfrac{34}{7}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)