Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 1/2-1/3-1/6).(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0.(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0+3/4.x = 9/10
3/4.x = 9/10
x = 9/10: 3/4
x = 6/5
b) x + ( 3/1.3+3/3.5+...+3/13.15) = 11/5
x + 3/2. ( 1-1/3 + 1/3 - 1/5 + ...+ 1/13 - 1/15) = 11/5
x + 3/2. ( 1-1/15) = 11/5
x + 3/2.14/15 = 11/5
x + 7/5 = 11/5
x = 11/5 - 7/5
x = 4/5
\(\left(x+\dfrac{1}{3}\right)\times\dfrac{9}{14}\times\dfrac{7}{3}-\dfrac{1}{3}=1:\dfrac{9}{5}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}-\dfrac{1}{3}=\dfrac{5}{9}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}=\dfrac{5}{9}+\dfrac{1}{3}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}=\dfrac{8}{9}\\ \Rightarrow x+\dfrac{1}{3}=\dfrac{8}{9}:\dfrac{3}{2}\\ \Rightarrow x+\dfrac{1}{3}=\dfrac{16}{27}\\ \Rightarrow x=\dfrac{16}{27}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{7}{27}\)
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
\(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
\(=\left(\dfrac{1}{10}+\dfrac{9}{10}\right)+\left(\dfrac{2}{10}+\dfrac{8}{10}\right)+\left(\dfrac{3}{10}+\dfrac{7}{10}\right)+\left(\dfrac{4}{10}+\dfrac{6}{10}\right)+\dfrac{5}{10}\)
\(=1+1+1+1+\dfrac{5}{10}\)
\(=4+\dfrac{5}{10}\)
\(=\dfrac{45}{10}\)
\(13,25:0,5+13,25:0,25+13,25:0,125+13,25\times6\)
\(=13,25:\dfrac{1}{2}+13,25:\dfrac{1}{4}+13,25:\dfrac{1}{8}+13,25\times6\)
\(=13,25\times2+13,25\times4+13,25\times8+13,25\times6\)
\(=13,25\times\left(2+4+8+6\right)\)
\(=13,25\times20\)
\(=265\)
a) \(\dfrac{2}{3}+\dfrac{3}{4}< x< 1\dfrac{1}{3}+\dfrac{4}{5}\)
\(\dfrac{2\times4}{3\times4}+\dfrac{3\times3}{4\times3}< x< \dfrac{\left(1\times3+1\right)\times5}{3\times5}+\dfrac{4\times3}{5\times3}\)
\(\dfrac{8}{12}+\dfrac{9}{12}< x< \dfrac{20}{15}+\dfrac{12}{15}\\ \dfrac{17}{12}< x< \dfrac{32}{15}\)
Ước tính: \(\dfrac{17}{12}=1,4\) và \(\dfrac{32}{15}=2,1\). Vậy số tự nhiên x = 2 sẽ thõa mãn 1,4 < x < 2,1
b)
\(\dfrac{5}{6}-\dfrac{1}{4}< x< 2\dfrac{1}{3}-\dfrac{2}{5}\\ \dfrac{5\times4}{6\times4}-\dfrac{1\times6}{4\times6}< x< \dfrac{\left(2\times3+1\right)\times5}{3\times5}-\dfrac{2\times3}{5\times3}\\ \dfrac{20}{24}-\dfrac{6}{24}< x< \dfrac{35}{15}-\dfrac{6}{15}\\ \dfrac{14}{24}< x< \dfrac{29}{15}\)
Ước tính \(\dfrac{14}{24}=0,5\) và \(\dfrac{29}{15}=1,9\)
Vậy với x là số tự nhiên x = 1 sẽ thõa mãn 0,5 < x < 1,9
a: \(x\cdot\dfrac{3}{4}+x=\dfrac{7}{8}\)
\(\Leftrightarrow x\cdot\dfrac{7}{4}=\dfrac{7}{8}\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006