Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
Giả sử tồn tại n thoả mãn đề bài.
Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.
Do đó \(n^3+2018n⋮4\).
Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).
Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.
Vậy không tồn tại n thoả mãn đề bài.
-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6
Phần bể chưa có nước bằng:
1 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) (thể tích bể)
Bể sẽ đầy sau:
\(\dfrac{3}{4}\) : \(\dfrac{1}{8}\) = 6 (giờ)
Đs...
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5
a + 3 ≤x≤a + 2018 ( a ∈N )
vậy x thuộc (a+3;a+4;a+5;a+6;...;a+2018)
tổng:
a+3+a+4+a+5+a+6+a+7+...+a+2018
=a*2016+3+4+5+6+7+...+2018
=a*2016+(2018+3)*2016:2
-----đến đây cậu làm đc ùi-mik lười lắm ------
bài 1
a) \(\frac{5.6+5.7}{5.8+20}\)=\(\frac{5.6+5.7}{5.8+5.4}\)=\(\frac{5\left(6+7\right)}{5\left(8+4\right)}\)=\(\frac{13}{12}\)
b)\(\frac{8.9-4.15}{12.7-180}\)=\(\frac{4.\left(2.9\right)-4.15}{12.7-12.15}\)=\(\frac{4.18-4.15}{12.7-12.15}\)=\(\frac{4\left(18-15\right)}{12\left(7-15\right)}\)=\(\frac{12}{12.\left(-8\right)}\)=\(\frac{-1}{8}\)
Bài 2
a) \(\frac{7}{-15}\)=\(\frac{-7}{15}\)=\(\frac{\left(-7\right).5}{15.5}\)=\(\frac{-35}{75}\)
\(\frac{-8}{-25}\)=\(\frac{8}{25}\)=\(\frac{8.3}{25.3}\)=\(\frac{24}{75}\)
\(\frac{11}{-75}\)=\(\frac{-11}{75}\)
b)\(\frac{-8}{-45}\)=\(\frac{8}{45}\)=\(\frac{8.4}{45.4}\)=\(\frac{32}{180}\)
\(\frac{13}{-180}\)=\(\frac{-13}{180}\)
\(\frac{-4}{30}\)=\(\frac{-4.6}{30.6}\)=\(\frac{-24}{180}\)