Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2013.2015}\)
\(\Leftrightarrow2A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\right)\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2015}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2015}=\dfrac{2012}{6045}\)
\(\Leftrightarrow A=\dfrac{1006}{6045}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{2013.2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}+\dfrac{1}{2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2015}\)
2A=\(\dfrac{2014}{2015}\)
A=\(\dfrac{1007}{2015}\)
Khi gặp bài này, bn nên tách 1 phân số ra thành hiệu của 2 phân số.
A=3/(1.3) + 3/(3.5) + 3/(5.7) +.....+ 3/(49.51)
A=3/2 . [2/(1.3) + 2/(3.5) + 2/(5.7) +.....+ 2/(49.51)]
A=3/2 . (1/1 - 1/3 + 1/3 - 1/5 +1/5 - 1/7 +.....+ 1/49 -1/51)
A=3/2 . (1/1 - 1/51)
A=3/2 . 50/51
A=25/17.
giup minh nha
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{21.23}\)
\(=5-\frac{5}{3}+\frac{5}{3}-\frac{5}{5}+\frac{5}{5}-\frac{5}{7}+...+\frac{5}{21}-\frac{5}{23}\)
\(=5\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(=5\left(1-\frac{1}{23}\right)\)
\(=5.\frac{22}{23}\)
\(=\frac{110}{23}\)
\(A=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{21}-\frac{1}{23}\right)\)
\(A=\frac{5}{2}.\left(1-\frac{1}{23}\right)\)
\(A=\frac{5}{2}.\frac{22}{23}\)
\(A=\frac{55}{23}\)
a)5.(x+3)-2.(x+4)-(x-2)=17
=> 5x + 15 - 2x - 8 - x + 2 = 17
=> 2x + 9 = 17
=> 2x = 8
=> x = 4
b) S=1.3+2.4+3.5+...+48.50+49.51
= 1(2 + 1) + 2(3 + 1) + 3(4 + 1) + ... + 48(49 + 1) + 49(50 + 1)
= 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + ... + 48 + 48.49 + 49 + 49.50
= (1 + 2 + 3 + ... + 49) + (1.2 + 2.3 + 3.4 + ... + 49.50)
đặt A = 1 + 2 + 3 + ... + 49 = (1 + 49).49 : 2 = 1225
đặt B = 1.2 + 2.3 + 3.4 + ... + 49.50
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
A + B = S = 41650 + 1225 = 42875
Ta có:
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
sai gòi