K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

1 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

20 tháng 2 2017

Giải bài tổng quát sau: cho p là tích n số nguyên tố đầu tiên, CM p-1 và p+1 không là số chính phương

Giải: 

Do p là tích của n số nguyên tố đầu tiên nên p không chia hết cho 4 => p có dạng: 4k+1, 4k+2, 4k+3

Nếu p=4k+1 => p+1 chia 4 dư 2=> không chính phương do số chính phương chia 4 dư 0 hoặc 1

Nếu p=4k+2 => p+1 chia 4 dư 3, => không chính phương

Nếu p=4k+3 => p-1 chia 4 dư 2 => không chính phương

16 tháng 4 2016

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4

Ta chứng minh p + 1 là số chính phương

Giả sử p + 1 là số chính phương. Đặt p + 1 = m2

Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ

Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4

Ta chứng minh p – 1 là số chính phương

Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2

Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương

Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương

25 tháng 4 2018

nhận xét:số chính phương khi chia cho 3 hay 4 đều có số dư là 0 hoặc 1

Ta có:\(P=2\cdot3\cdot5\cdot....\)

Do p chia hết cho 3 nên p-1 chia 3 dư 2.theo nhận xét suy ra p-1 không phải là số chính phương(1)

dễ thấy p không chia hết cho 4 và p chia hết cho 2 nên p chia 4 dư 2 suy ra p+1 chia 4 dư 3.theo nhận xét suy ra p+1 không là số chính phương

TỪ(1),(2) suy ra điều cần chứng minh

12 tháng 1 2020

Giả sử p-1 không là số chính phương

Vì p là tích 2016 số nguyên tố đầu , trong đó có chứa thừa số 3

=> p chia hết cho 3

=> p-1 có dạng 3k - 1 , p+1=3k+1 (k thuộc N)

nhưng 3k+1 , 3k-1 ko có dạng là số chính phương

=> điều giả sử là sai

=> p-1 , p+1 ko là số chính phương

13 tháng 3 2019

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 ﴾*﴿ Ta chứng minh p+1 là số chính phương: Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² ﴾m∈N﴿ Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. Đặt m = 2k+1 ﴾k∈N﴿. Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k﴾k+1﴿ chia hết cho 4. Mâu thuẫn với ﴾*﴿ Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương Ta chứng minh p‐1 là số chính phương: Ta có: p = 2.3.5… là số chia hết cho 3 => p‐1 có dạng 3k+2. Vì không có số chính phương nào có dạng 3k+2 nên p‐1 không là số chính phương . Vậy nếu p là tích n số nguyên tố đầu tiên thì p‐1 và p+1 không là số chính phương ﴾đpcm﴿ 

láo lớp 6 làm gì đã học số chính phương