Tìm x biết
\(\frac{2}{x-1}=\frac{4}{-6}\)
Mọi người giúp tôi với ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
Điều kiện \(\hept{\begin{cases}x\ne0\\3x^2-x-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{4}{3}\end{cases}}}\)
Đặt \(\frac{3x^2-x-4}{x}=a\)thì ta có
\(PT\Leftrightarrow a+\frac{9}{a}=6\)
\(\Leftrightarrow a^2-6a+9=0\)
\(\Leftrightarrow\left(a-3\right)^2=0\)
\(\Leftrightarrow a=3\)
\(\Leftrightarrow\frac{3x^2-x-4}{x}=3\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow\left(3x^2-6x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)
b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)
\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)
\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x}{x-3}\)
c) Để D = 0
\(\Leftrightarrow\frac{4x}{x-3}=0\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0\)
Vậy để D = 0 \(\Leftrightarrow\)x = 0
d) Khi \(\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)
\(A=\frac{1}{3}x^3y^4-xy+\frac{1}{6}x^3y^4+3xy-\frac{1}{2}x^3y^4-1\)
\(=\left(\frac{1}{3}x^3y^4+\frac{1}{6}x^3y^4-\frac{1}{2}x^3y^4\right)+\left(3xy-xy\right)-1\)
\(=2xy-1\)
Thay x = 2016 ; y = -1/2016 vào A ta được :
\(A=2\cdot2016\cdot\left(-\frac{1}{2016}\right)-1\)
\(=-2-1\)
\(=-3\)
Vậy giá trị của A = -3 khi x = 2016 ; y = -1/2016
\(5\frac{4}{7}\): [ x : 1,3 + 8,4 . \(\frac{6}{7}\). ( 6 - \(\frac{\left(2,3+5\div6,25\right)\times7}{8\times0,-125+6,9}\)) ] = \(1\frac{1}{14}\)
\(\frac{39}{7}\): [ x : 1,3 + \(\frac{36}{5}\). ( 6 - \(\frac{\left(2,3+0,8\right).7}{0,1+6,9}\)) ] = \(\frac{15}{14}\)
\(\frac{39}{7}\): [ x : 1,3 + \(\frac{36}{5}\). ( 6 - \(\frac{3,1.7}{7}\)) ] = \(\frac{15}{14}\)
\(\frac{39}{7}\): [ x : 1,3 + \(\frac{36}{5}\). ( 6 - 3,1 ) ] = \(\frac{15}{14}\)
x : 1,3 + \(\frac{36}{5}\). 2,9 = \(\frac{39}{7}\): \(\frac{15}{14}\)
x : 1,3 + 20,88 = 5,2
x : 1,3 = - 15,68
x = - 15,68 . 1,3
x = - 20,384
ta có
\(5\frac{4}{7}:\left\{x:1,3+8,4.\frac{6}{7}.\left[6-\frac{\left(2,3+5:6,25\right).7}{8.0,0125+6,9}\right]\right\}=1\frac{1}{14}\)
\(\Leftrightarrow\frac{39}{7}:\left\{x:1,3+7,2.\left[6-\frac{\left(2,3+0,8\right).7}{0,1+6,9}\right]\right\}=\frac{15}{14}\)
\(\Leftrightarrow\frac{39}{7}:\left\{x:1,3+7,2.\left[6-\frac{3,1.7}{7}\right]\right\}=\frac{15}{14}\)
\(\Leftrightarrow\frac{39}{7}:\left\{x:1,3+7,2.2,9\right\}=\frac{15}{14}\Leftrightarrow\left\{x:1,3+7,2.2,9\right\}=\frac{39}{7}:\frac{15}{14}\)
\(\Leftrightarrow x:1,3+20,88=5,2\Leftrightarrow x:1,3=-15,68\Leftrightarrow x=-20,384\)
\(\frac{2}{x-1}=\frac{4}{-6}\)
\(\frac{2}{x-1}=\frac{2}{-3}\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
vậy \(x=-2\)
\(\frac{2}{x-1}=\frac{4}{-6}\)
\(\Leftrightarrow2.\left(-6\right)=\left(x-1\right).4\)
(x-1).4=-12
x-1=(-12):4
x-1=-3
x = (-3)+1
x = -2