Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)
b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)
\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)
\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x}{x-3}\)
c) Để D = 0
\(\Leftrightarrow\frac{4x}{x-3}=0\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0\)
Vậy để D = 0 \(\Leftrightarrow\)x = 0
d) Khi \(\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
b, \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{1}{3}\left(27-\frac{1}{x+9}\right)\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -3; x \(\ne\) -6; x \(\ne\) -9)
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) - \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}-27+\frac{1}{x+9}\)) = 0
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-27\)) = 0
\(\Leftrightarrow\) \(\frac{1}{x}-27\) = 0
\(\Leftrightarrow\) x = \(\frac{1}{27}\) (TM ĐKXĐ)
Vậy S = {\(\frac{1}{27}\)}
Chúc bn học tốt!!
a, \(\frac{5x-3}{50x^2-2}+\frac{5x-9}{12x-60x^2}+\frac{1}{12x}=\frac{8x-5}{80x^2+16x}\) (ĐKXĐ: x \(\ne\) \(\pm\)\(\frac{1}{5}\); x \(\ne\) 0)
\(\Leftrightarrow\) \(\frac{5x-3}{2\left(5x-1\right)\left(5x+1\right)}+\frac{-5x+9}{12x\left(5x-1\right)}+\frac{1}{12x}=\frac{8x-5}{16x\left(5x+1\right)}\)
\(\Leftrightarrow\) \(\frac{24x\left(5x-3\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}+\frac{-4\left(5x+1\right)\left(5x-9\right)}{48x\left(5-1x\right)\left(5x+1\right)}+\frac{4\left(5x-1\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}=\frac{3\left(8x-5\right)\left(5x-1\right)}{48x\left(5x-1\right)\left(5x+1\right)}\)
\(\Leftrightarrow\) 24x(5x - 3) - 4(5x + 1)(5x - 9) + 4(5x - 1)(5x + 1) = 3(8x - 5)(5x - 1)
\(\Leftrightarrow\) 120x2 - 72x - 100x2 + 160x + 36 + 100x2 - 4 = 120x2 - 99x + 15
\(\Leftrightarrow\) 120x2 - 120x2 - 100x2 + 100x2 - 72x + 160x + 99x = 15 - 36 + 4
\(\Leftrightarrow\) 187x = -17
\(\Leftrightarrow\) x = \(\frac{-1}{11}\) (TM ĐKXĐ)
Vậy S = {\(\frac{-1}{11}\)}
Chúc bn học tốt!! (Đã được kiểm chứng không sai :)
hu hu !! Sao ko có ai làm giúp em hết vậy!
Ngày mai em bị ăn đòn mất!!!hu hu
a) Bạn xem lại vế phải của PT là $x^2-1$ hay $x^3-1$?
b) ĐK: $x\neq \pm 4$
PT \(\Leftrightarrow 5+\frac{48}{x-8}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=\frac{2(x+4)-9}{x+4}+\frac{3(x-4)+11}{x-4}\)
\(\Leftrightarrow 5+\frac{48}{x-8}=2-\frac{9}{x+4}+3+\frac{11}{x-4}\)
\(\Leftrightarrow \frac{48}{x-8}=\frac{11}{x-4}-\frac{9}{x+4}=\frac{11(x+4)-9(x-4)}{(x-4)(x+4)}=\frac{2x+80}{x^2-16}\)
\(\Leftrightarrow \frac{24}{x-8}=\frac{x+40}{x^2-16}\Rightarrow 24(x^2-16)=(x-8)(x+40)\)
\(\Leftrightarrow 24x^2-384=x^2+32x-320\)
\(\Leftrightarrow 23x^2-32x-64=0\Rightarrow x=\frac{16\pm 24\sqrt{3}}{23}\) (cảm giác đề cứ sai sai)
c)
ĐK: $x\neq \pm \frac{2}{3}$
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow \frac{(3x+2)^2-6(3x-2)}{(3x-2)(3x+2)}=\frac{9x^2}{(3x-2)(3x+2)}\)
\(\Rightarrow (3x+2)^2-6(3x-2)=9x^2\)
\(\Leftrightarrow 9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow -6x+16=0\Rightarrow x=\frac{8}{3}\)
Bài 2 :
a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\frac{x-2}{x+2}\)
c) Thay x = 4 ta có :
\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)
Vậy.........
\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)
\(\left(5x-2\right)\left(25x^2+10x+4\right)\)
\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)
\(=\left(5x\right)^3-2^3\)
\(=125x^3-8\)