K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Nhận xét : số chính phương chia 5 dư 0 hoặc 1 hoặc 4

Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 là số nguyên tố )

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5

=> n.(n^2+1).(n^2+4) chia hết cho 5

Vậy n.(n^2+1).(n^2+4) chia hết cho 5

k mk nha

25 tháng 1 2021

Giả sử:,

+) nn chia 3 dư 1 thì n2 cũng chia 3 dư 1, khi đó n2−1 chia 3 dư 0 nên không là số nguyên tố.

+) nn chia 3 dư 2 thì n^2 cũng chia 3 dư 1, khi đó n2-1 chia 3 dư 0 nên không là số nguyên tố

Vậy ta có đpcm :)

nó là thế, chứng minh làm cái đéo gì

hình như câu 2 Nguyễn Hoài Linh copy

20 tháng 9

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

30 tháng 12 2017

Nhận xét : số chính phương chia 5 dư 0;1;4

Đặt A = n.(n^2+1).(n^2+4)

Nếu n^2 chia hết cho 5 thì n chia hết cho 5 (vì 5 nguyên tố) => A chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5

=> đpcm

k mk nha

30 tháng 12 2017

(n^2+1).(n^2+4)

=n^2.(1+4)

=n^2.5

Vì5 chia hết cho 5 nên n^2.5 chia hết cho 5

Hay(n^2+1).(n^2+4) chia hết cho 5(đpcm)