Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử:,
+) nn chia 3 dư 1 thì n2 cũng chia 3 dư 1, khi đó n2−1 chia 3 dư 0 nên không là số nguyên tố.
+) nn chia 3 dư 2 thì n^2 cũng chia 3 dư 1, khi đó n2-1 chia 3 dư 0 nên không là số nguyên tố
Vậy ta có đpcm :)
Nhận xét : số chính phương chia 5 dư 0;1;4
Đặt A = n.(n^2+1).(n^2+4)
Nếu n^2 chia hết cho 5 thì n chia hết cho 5 (vì 5 nguyên tố) => A chia hết cho 5
Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5
Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5
=> đpcm
k mk nha
(n^2+1).(n^2+4)
=n^2.(1+4)
=n^2.5
Vì5 chia hết cho 5 nên n^2.5 chia hết cho 5
Hay(n^2+1).(n^2+4) chia hết cho 5(đpcm)
tham khảo
Câu hỏi của Nguyễn Thị Quỳnh - Toán lớp 7 - Học toán với OnlineMath
Nhận xét : số chính phương chia 5 dư 0 hoặc 1 hoặc 4
Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 là số nguyên tố )
=> n.(n^2+1).(n^2+4) chia hết cho 5
Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5
=> n.(n^2+1).(n^2+4) chia hết cho 5
Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5
=> n.(n^2+1).(n^2+4) chia hết cho 5
Vậy n.(n^2+1).(n^2+4) chia hết cho 5
k mk nha