Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+n+6=n(n+1)+6
n(n+1) không có tận cùng=4;9=>n(n+1)+6 không chia hết cho 5
=>n2+6 không chia hết cho 5
=>đpcm
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Nhận xét : số chính phương chia 5 dư 0 hoặc 1 hoặc 4
Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 là số nguyên tố )
=> n.(n^2+1).(n^2+4) chia hết cho 5
Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5
=> n.(n^2+1).(n^2+4) chia hết cho 5
Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5
=> n.(n^2+1).(n^2+4) chia hết cho 5
Vậy n.(n^2+1).(n^2+4) chia hết cho 5
k mk nha
Nhận xét : số chính phương chia 5 dư 0;1;4
Đặt A = n.(n^2+1).(n^2+4)
Nếu n^2 chia hết cho 5 thì n chia hết cho 5 (vì 5 nguyên tố) => A chia hết cho 5
Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5
Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5
=> đpcm
k mk nha
(n^2+1).(n^2+4)
=n^2.(1+4)
=n^2.5
Vì5 chia hết cho 5 nên n^2.5 chia hết cho 5
Hay(n^2+1).(n^2+4) chia hết cho 5(đpcm)
Cho A=n5-n
A = n⁵ - n
= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
{5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5 (2)
(1)(2)=> A chia hết cho 30 do (5,6)=1
a) Ta có dãy -6;-5;...2;3.
Tổng (-6)+(-5)+(-4)+(-3)+...+3 =(-6)+(-5)+(-4) [2 số đối có tổng =0]
=-15
b. Ta có dãy -3;-2;-1;0;1;2;3.
Tổng : (-3)+(-2)+(-1)+0+1+2+3 = 0 .
a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n
+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5
=> Biểu thức rên chia hết cho 5 với mọi n
b/
+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2
+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2
=> biểu thức chia hết cho 2 với mọi n thuộc N