Câu 1:CMR A\(⋮\)7
A=2+\(2^2\)+........+\(2^{2004}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ) A = 2 + 22 + 23 + 24 + ... + 22003 + 22004
=> A = ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 22003 + 22004 )
=> A = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ... + 22003.( 1 + 2 )
=> A = 2.3 + 23.3 + .... + 22003.3
=> A = 3.( 2 + 23 + 25 + .... + 22001 + 22003 )
Vì 3 ⋮ 3 => A ⋮ 3 ( ĐPCM )
+ ) A = 2 + 22 + 23 + 24 + 25 + 26 + ..... + 22002 + 22003 + 22004
=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22002.22003.22004 )
=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + ... + 22002.( 1 + 2 + 2.2 )
=> A = 2.7 + 24.7 + 27.7 + .... + 22002.7
=> A = 7.( 2 + 24 + 27 + ... + 22002 )
Vì 7 ⋮ 7 => A ⋮ 3 ( ĐPCM )
+ ) A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + .... + 22001 + 22002 + 22003 + 22004
=> A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 22001 + 22002 + 22003 + 22004 )
=> A = 2.( 1 + 2 + 22 + 23 ) + 25.( 1 + 2 + 22 + 23 ) + .... + 22001.( 1 + 2 + 22 + 23 )
=> A = 2.15 + 25.15 + 29.15 + .... + 22001.15
=> A = 15.( 2 + 25 + 29 + .... + 22001 )
Vì 15 ⋮ 15 => A ⋮ 15 ( ĐPCM )
Câu b tương tự .
A=2+2^2+2^3+....+2^2004
A=(2+2^2)+(2^3+2^4)+.....+(2^2003+2^2004)
A=1.(2+2^2)+2^2(2+2^2)+...+2^2002(2+2^2)
A=1.6+2^2.6+...+2^2003.6
A=6(1+2^2+....+2^2003) chia hết ch0 6
b/
B=2+2^2+2^3+....+2^2004
B=(2+2^2+2^3+2^4)+....+(2^2001+2^2002+2^2003+2^2004)
B=1(2+2^2+2^3+2^4)+...+2^2000(2+2^2+2^3+2^4)
B=1.30+...+2^2000.30
B=30(1+...+2^2000) chia hết cho 30
+ A luôn chia hết cho 2
+ A = 2 + 22 + ... + 280
A = ( 2 + 22 ) + ... + ( 279 + 280 )
A = 2 . ( 1 + 2 ) + ... + 279 . ( 1 + 2 )
A = 2 . 3 + ... + 279.3 \(⋮\)3
+ Vì A chia hết cho cả 2 và 3 => A chia hết cho 2 . 3 => A chia hết cho 6
+ A = 2 + 22 + ... + 280
A = ( 2 + 22 + 23 ) + ... + ( 278 + 279 + 280 )
A = 2 . ( 1 + 2 + 22 ) + ... + 278 . ( 1 + 2 + 22 )
A = 2 . 7 + ... + 278.7 \(⋮\)7
a)A chia hết cho 6 vì trong A có 2+2^2=2+4=6 chia hết cho 6
b)A chia hết cho 7 vì trong A có 2+2^2+2^3=2+4+8=14 chia hết cho7
c)A chia hết cho 30 vì trong A có 2+2^2+2^3+2^4=2+4+8+16=30
***** HIỂN NHIÊN \(A⋮2\) (1)
a) \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=2\left(2+1\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{2003}.3⋮3\)
=> \(A⋮3\) (2)
TỪ (1) VÀ (2) => \(A⋮6\)
VẬY TA CÓ ĐPCM.
b) \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
=> \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
=> \(A=2.7+2^4.7+...+2^{2002}.7⋮7\)
VẬY TA CÓ ĐPCM.
c) TA CÓ: \(A⋮6\left(cmt\right)\) (3)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
=> \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)
=> \(A=2.15+....+2^{2001}.15⋮5\)
=> \(A⋮5\) (4)
TỪ (3) VÀ (4) => \(A⋮30\)
VẬY TA CÓ ĐPCM.
A= (2+2^2)+(2^3+2^4)+(2^5+2^6)+.....+(2^59+2^60) = 2.(1+2)+2^3.(1+2)+.....+2^59.(1+2) = (2+2^3+...+2^59).3 chia hết cho 3 A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^58+2^59+2^60) = (2+2^4+...+2^58).(1+2+2^2) =_______________.7 chia hết cho 7 |
(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
\(A=1+2+2^2+...+2^{2024}\)
\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2022}\left(1+2+2^2\right)\)
\(=7\cdot\left(1+2^3+...+2^{2022}\right)⋮7\)
A = 2 + 22 + ...+ 22004
Xét dãy số: 1; 2; ....; 2004
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (2004 - 1) : 1 + 1 = 2004 (số)
Vì 2004 : 3 = 668
Vậy nhóm 4 số hạng liên tiếp của A vào nhau ta được
A = (2 + 22 + 23) + (24 + 25 + 26) + ... + (22002 + 22003 + 22004)
A = 2.(1 + 2 + 22) + 24.(1 + 2 + 22)+...+ 22002.(1 + 2 + 22)
A = (1 + 2 + 22).(2 + 24 + ...+ 22002)
A = 7.(2 + 24 + ...+ 22002) ⋮ 7