K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12

A = 2 + 22 + ...+ 22004

Xét dãy số: 1; 2; ....; 2004

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (2004 - 1) : 1 + 1 = 2004 (số)

Vì 2004 : 3  = 668

Vậy nhóm 4 số hạng liên tiếp của A vào nhau ta được 

A = (2  + 22 + 23) + (24 + 25 + 26) + ... + (22002 + 22003 + 22004)

A = 2.(1  + 2 + 22) + 24.(1 + 2  + 22)+...+ 22002.(1 + 2 + 22)

A = (1  + 2 + 22).(2 + 24 + ...+ 22002)

A = 7.(2 + 24 + ...+ 22002) ⋮ 7

 

4 tháng 2 2016

+ ) A = 2 + 22 + 23 + 2+ ... + 22003 + 22004

=> A = ( 2 + 22 ) + ( 2+ 2) + .... + ( 22003 + 22004 )

=> A = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ... + 22003.( 1 + 2 )

=> A = 2.3 + 23.3 + .... + 22003.3

=> A = 3.( 2 + 23 + 25 + .... + 22001 + 22003 )

Vì 3 ⋮ 3 => A ⋮ 3 ( ĐPCM )

+ ) A = 2 + 22 + 23 + 2+ 25 + 26 + ..... + 22002 + 22003 + 22004

=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22002.22003.22004 )

=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + ... + 22002.( 1 + 2 + 2.2 )

=> A = 2.7 + 24.7 + 27.7 + .... + 22002.7

=> A = 7.( 2 + 24 + 27 + ... + 22002 )

Vì 7 ⋮ 7 => A ⋮ 3 ( ĐPCM )

+ ) A = 2 + 22 + 23 + 2+ 25 + 26 + 27 + 28 + .... + 22001 + 22002 + 22003 + 22004

=> A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 22001 + 22002 + 22003 + 22004 )

=> A = 2.( 1 + 2 + 22 + 23 ) + 25.( 1 + 2 + 22 + 23 ) + .... + 22001.( 1 + 2 + 22 + 2)

=> A = 2.15 + 25.15 + 29.15 + .... + 22001.15

=> A = 15.( 2 + 25 + 29 + .... + 22001 )

Vì 15 ⋮ 15 => A ⋮ 15 ( ĐPCM )

Câu b tương tự .

4 tháng 2 2016

Nhóm vào sẽ làm được

25 tháng 11 2015

A=2+2^2+2^3+....+2^2004

A=(2+2^2)+(2^3+2^4)+.....+(2^2003+2^2004)

A=1.(2+2^2)+2^2(2+2^2)+...+2^2002(2+2^2)

A=1.6+2^2.6+...+2^2003.6

A=6(1+2^2+....+2^2003) chia hết ch0 6

25 tháng 11 2015

b/

B=2+2^2+2^3+....+2^2004

B=(2+2^2+2^3+2^4)+....+(2^2001+2^2002+2^2003+2^2004)

B=1(2+2^2+2^3+2^4)+...+2^2000(2+2^2+2^3+2^4)

B=1.30+...+2^2000.30

B=30(1+...+2^2000) chia hết cho 30

4 tháng 12 2015

a) Ta thấy: 2 + 22 + 23 + 24 chia hết cho 6

suy ra tổng trên chia hết cho 6

suy ra đpcm

 

11 tháng 1 2018

 + A luôn chia hết cho 2

+ A = 2 + 22 + ... + 280

A = ( 2 + 22 ) + ... + ( 279 + 280 )

A = 2 . ( 1 + 2 ) + ... + 279 . ( 1 + 2 )

A = 2 . 3 + ... + 279.3 \(⋮\)3

+ Vì A chia hết cho cả 2 và 3 => A chia hết cho 2 . 3 => A chia hết cho 6

+  A = 2 + 22 + ... + 280

A = ( 2 + 22 + 23 ) + ... + ( 278 + 279 + 280 )

A = 2 . ( 1 + 2 + 22 ) + ... + 278 . ( 1 + 2 + 22 )

A = 2 . 7 + ... + 278.7 \(⋮\)7

8 tháng 12 2016

a)A chia hết cho 6 vì trong A có 2+2^2=2+4=6 chia hết cho 6

b)A chia hết cho 7 vì trong A có 2+2^2+2^3=2+4+8=14 chia hết cho7

c)A chia hết cho 30 vì trong A có 2+2^2+2^3+2^4=2+4+8+16=30

15 tháng 8 2020

***** HIỂN NHIÊN    \(A⋮2\)     (1)

a)    \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2\left(2+1\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2003}.3⋮3\)

=>    \(A⋮3\)      (2)

TỪ (1) VÀ (2) =>    \(A⋮6\)

VẬY TA CÓ ĐPCM.

b)     \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

=>   \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

=>    \(A=2.7+2^4.7+...+2^{2002}.7⋮7\)

VẬY TA CÓ ĐPCM.

c)     TA CÓ:      \(A⋮6\left(cmt\right)\)      (3)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

=>    \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

=>    \(A=2.15+....+2^{2001}.15⋮5\)

=>     \(A⋮5\)      (4)

TỪ (3) VÀ (4) =>     \(A⋮30\)

VẬY TA CÓ ĐPCM.

29 tháng 12 2015
A= (2+2^2)+(2^3+2^4)+(2^5+2^6)+.....+(2^59+2^60)
= 2.(1+2)+2^3.(1+2)+.....+2^59.(1+2)
= (2+2^3+...+2^59).3 chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^58+2^59+2^60)
= (2+2^4+...+2^58).(1+2+2^2)
=_______________.7 chia hết cho 7
29 tháng 12 2015

De chung minh A chia het cho 3 thi ta co nhom nhu sau : 

Bài tập Toán

9 tháng 8 2016

(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57     (1)

vì n là số tự nhiên ko chia hết cho 5

suy ra n = 1;2;3;4;6...

suy ra n^4 - 1 chắc chắn chia hết cho 5    (2)

từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)

24 tháng 12 2023

help meeee

 

24 tháng 12 2023

\(A=1+2+2^2+...+2^{2024}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2022}\left(1+2+2^2\right)\)

\(=7\cdot\left(1+2^3+...+2^{2022}\right)⋮7\)