cho a,b là các số thực không âm.cmr:\(3a^3+17b^3\ge18ab^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:
Min:
\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)
\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)
\(\Rightarrow P\ge\sqrt{2}\)
\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị
GTNN là tắt của giá trị nhỏ nhất,
Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\) (số a là số biết trước)
VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\) hay \(minP=\dfrac{1}{3}\)
Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,
VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra
<=> x = b (x là ẩn và b là biết trước)
Ở một số bài có thể cho điều kiện của ẩn.
\(a^3-3a^2+3a-1+5a-8=0\Leftrightarrow\left(a-1\right)^3+5\left(a-1\right)-3=0\) (1)
\(b^3-6b^2+12b-8+5b-7=0\Leftrightarrow\left(b-2\right)^3+5\left(b-2\right)+3=0\) (2)
Cộng (1) với (2) ta được:
\(\left(a-1\right)^3+\left(b-2\right)^3+5\left(a-1\right)+5\left(b-2\right)=0\)
\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right)+5\left(a+b-3\right)=0\)
\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right)=0\)
Do \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5=\left(a-1-\dfrac{b-2}{2}\right)^2+\dfrac{3\left(b-2\right)^2}{4}+5>0\)
\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)
Áp dụng holder ta có:
\(\left(1+1+1\right)\left(x^2y+y^2z+z^2x\right)\left(xy^2+yz^2+zx^2\right)\)
\(\ge\left(\sqrt[3]{x^4yz}+\sqrt{y^4zx}+\sqrt{z^4xy}\right)^3=xyz\left(x+y+z\right)^3\)
Dạo này bận lắm nên cũng lười luôn nên thông cảm.
Bài này làm được theo 1 cách khác nhưng phải áp dụng 2 lần bđt
lần 1 dùng bđt Schur
lần 2 dùng AM-GM