K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

30 tháng 5 2021

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

30 tháng 5 2021

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:
Theo hệ quả quen thuộc của bđt AM-GM:
$(a+b+c)^2\leq 3(a^2+b^2+c^2)\leq 9$

$\Rightarrow a+b+c\leq 3$ (đpcm)

Từ đây ta có:

\(E\leq \frac{a}{\sqrt[3]{(a+b+c)a+bc}}+\frac{b}{\sqrt[3]{(a+b+c)b+ac}}+\frac{c}{\sqrt[3]{c(a+b+c)+ab}}\)

\(=\frac{a}{\sqrt[3]{(a+b)(a+c)}}+\frac{b}{\sqrt[3]{(b+c)(b+a)}}+\frac{c}{\sqrt[3]{(c+a)(c+b)}}\)

\(\leq \frac{\sqrt[3]{2}}{3}(\frac{a}{2}+\frac{a}{a+b}+\frac{a}{a+c})+\frac{\sqrt[3]{2}}{3}(\frac{b}{2}+\frac{b}{b+a}+\frac{b}{b+c})+\frac{\sqrt[3]{2}}{3}(\frac{c}{2}+\frac{c}{c+a}+\frac{c}{c+b})\)

\(=\frac{\sqrt[3]{2}(a+b+c)}{6}+\frac{\sqrt[3]{2}}{3}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})\leq \frac{3\sqrt[3]{2}}{2}\)

Vậy.................

NV
26 tháng 8 2021

\(3\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)

\(\Rightarrow\dfrac{a}{\sqrt[3]{3a+bc}}\le\dfrac{a}{\sqrt[3]{a\left(a+b+c\right)+bc}}=\sqrt[3]{2}.\sqrt[3]{\dfrac{a}{a+b}.\dfrac{a}{a+c}.\dfrac{a}{2}}\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{a}{2}\right)\)

Cộng vế và rút gọn:

\(E\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(E\le\dfrac{\sqrt[3]{2}}{3}\left(3+\dfrac{3}{2}\right)=\dfrac{3\sqrt[3]{2}}{2}\)

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

21 tháng 10 2020

helpppppppp

27 tháng 10 2021

Sửa đề \(\sqrt{a^2+bc}+\sqrt{b^2+ca}+\sqrt{c^2+ab}\le6\)

\(\sqrt{a^2+3b}=\sqrt{a^2+\left(a+b+c\right)b}=\sqrt{a^2+ab+b^2+bc}\\ =\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{a+b+a+c}{2}=\dfrac{2a+b+c}{2}\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{b^2+3c}\le\dfrac{a+2b+c}{2}\\\sqrt{c^2+3a}\le\dfrac{a+b+2c}{2}\end{matrix}\right.\)

Cộng VTV:

\(\Leftrightarrow VT\le\dfrac{2a+b+c+a+2b+c+a+b+2c}{2}\\ \Leftrightarrow VT\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

27 tháng 10 2021

em chưa hiểu cách biến đổi của cái này ạ\(\sqrt{a^2+ab+b^2+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)