Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+ b)3 = a3 + 3a2b + 3ab2 + b3 = (a3 + 3ab2) + (b3 + 3a2b) = 2006 + 2005 = 4011
=> a + b = \(\sqrt[3]{4011}\)
(a - b)3 = a3 - 3a2b + 3ab2 - b3 = (a3 + 3ab2) - (b3 + 3a2b) = 2006 - 2005 = 1
=> a - b = 1
=> P = a2 - b2 = (a - b)(a + b) = \(\sqrt[3]{4011}\)
ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.
Ta có : (a3 - 3ab2)2 = a6 - 6a4b2 + 9a2b4 .
(b3 - 3a2b)2 = b6 - 6a2b4 + 9a4b2 .
Ta lại có : (a3 - 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b2 + 3a2b4 + b6 .
<=> 2332 + 20102 = (a2 + b2)3 .
<=> a2 + b2 = \(\sqrt[3]{233^2+2010^2}\).
\(\left\{{}\begin{matrix}a^3+3ab^2=2019\\b^3+3a^2b=2018\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+3a^2b+3ab^2+b^3=4037\\a^3-3a^2b+3ab^2-b^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3=4037\\\left(a-b\right)^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{4037}\\a-b=1\end{matrix}\right.\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=\sqrt[3]{4037}\)
\(a^3-3a^2+3a-1+5a-8=0\Leftrightarrow\left(a-1\right)^3+5\left(a-1\right)-3=0\) (1)
\(b^3-6b^2+12b-8+5b-7=0\Leftrightarrow\left(b-2\right)^3+5\left(b-2\right)+3=0\) (2)
Cộng (1) với (2) ta được:
\(\left(a-1\right)^3+\left(b-2\right)^3+5\left(a-1\right)+5\left(b-2\right)=0\)
\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right)+5\left(a+b-3\right)=0\)
\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right)=0\)
Do \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5=\left(a-1-\dfrac{b-2}{2}\right)^2+\dfrac{3\left(b-2\right)^2}{4}+5>0\)
\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)