K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 11 2018

\(a^3-3a^2+3a-1+5a-8=0\Leftrightarrow\left(a-1\right)^3+5\left(a-1\right)-3=0\) (1)

\(b^3-6b^2+12b-8+5b-7=0\Leftrightarrow\left(b-2\right)^3+5\left(b-2\right)+3=0\) (2)

Cộng (1) với (2) ta được:

\(\left(a-1\right)^3+\left(b-2\right)^3+5\left(a-1\right)+5\left(b-2\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right)+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right)=0\)

Do \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5=\left(a-1-\dfrac{b-2}{2}\right)^2+\dfrac{3\left(b-2\right)^2}{4}+5>0\)

\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)

11 tháng 7 2015

(a+ b)3 = a3 + 3a2b + 3ab2 + b3 = (a3 + 3ab2) + (b3 + 3a2b) = 2006 + 2005 = 4011

=> a + b = \(\sqrt[3]{4011}\)

(a - b)3 = a3 - 3a2b + 3ab2 - b3 = (a3 + 3ab2) - (b3 + 3a2b) = 2006 - 2005 = 1

=> a - b = 1

=> P = a2 - b2 = (a - b)(a + b) = \(\sqrt[3]{4011}\)

11 tháng 7 2015

trời ơi mik cũng chán quá đây nè giờ chẳng muốn giải gì hết

4 tháng 7 2019

ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.

Ta có : (a - 3ab2)2 = a6 - 6a4b+ 9a2b4 .

               (b3 - 3a2b)= b- 6a2b4 + 9a4b.

Ta lại có : (a- 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b + 3a2b4 + b6  .

             <=> 2332 + 2010= (a2 + b2).

          <=> a2 + b\(\sqrt[3]{233^2+2010^2}\).

           

7 tháng 6 2015

thinh chắc là tính đó mà!

29 tháng 8 2018

\(\left\{{}\begin{matrix}a^3+3ab^2=2019\\b^3+3a^2b=2018\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+3a^2b+3ab^2+b^3=4037\\a^3-3a^2b+3ab^2-b^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3=4037\\\left(a-b\right)^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{4037}\\a-b=1\end{matrix}\right.\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=\sqrt[3]{4037}\)