Cho p là số nguyên tố (p > 3) và 2p+1 cũng là số nguyên tố.Chứng minh 4p+1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2
+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+ Vậy p có dạng 3k+2
Khi đó chia hết cho 3
Vậy 4p+1 là hợp số
tick nha
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)
Với p=2 \(\Rightarrow\)8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)
Với p=3\(\Rightarrow\)8p+1=8.3+1=24+1=25 là hợp số (loại)
Nếu p>3 \(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)
Với p=3k+1\(\Rightarrow\)8p+1=8(3k+1)+1=24k+8+1=24k+9\(⋮\)3 và lớn hơn 3 (loại)
Với p=s3k+2\(\Rightarrow\)8p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)
\(\Rightarrow\) p=2 hoặc 3k+2
Với p=2\(\Rightarrow\)4p+1=4.2+1=8+1=9 là hợp số (chọn)
Với p=3k+2\(\Rightarrow\)4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)
Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số
Với p=2 ⇒8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)
Với p=3⇒8p+1=8.3+1=24+1=25 là hợp số (loại)
Nếu p>3 ⇒p có dạng 3k+1 hoặc 3k+2 (k∈N*)
Với p=3k+1⇒8p+1=8(3k+1)+1=24k+8+1=24k+9⋮3 và lớn hơn 3 (loại)
Với p=s3k+2⇒8p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)
⇒ p=2 hoặc 3k+2
Với p=2⇒4p+1=4.2+1=8+1=9 là hợp số (chọn)
Với p=3k+2⇒4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)
Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số
p là số nguyên tố lớn hơn 3 nên chắc chắn p ko chia hết cho 3
=>2p ko chia hết cho 3
mà 2p+1 nguyên tố
nên 2p+2 chia hết cho 3
=>2(2p+2) chia hết cho 3
=>4p+4 chia hết cho 3
=>4p+1 chia hết cho 3
=>4p+1 là hợp số(đpcm)
Do p là số nguyên tố > 3 nên p không chia hết cho 3
Khi đó p sẽ có dạng 3k + 1 và 3k + 2 (\(k\in N\))
Với p = 3k+1 => 4p - 1 = 4(3k + 1) - 1 = 12k + 4 - 1 = 12k + 3 chia hết cho 3 mà 4p - 1 > 3 nên 4p - 1 là hơp số ( trái với đề bài )
Với p 3k + 2 => 4p - 1 là số nguyên tố mà 4p + 1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3 => 4p + 1 là hợp số (đpcm)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)
Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.
Ta có đpcm.
Cần gấp
p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)
=>Loại
Vậy: p=3k+2
\(4p+1=4\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
=>4p+1 là hợp số