Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) p = 2
=> 3p2+4= 15 không phải số nguyên tố => loại
+) p = 3
=> 2p2+3= 21 không phải SNT => loại
+) p = 5
=> 2p2-1= 49 không phải SNT => loại
+) p = 7
=> 2p2-1 = 97
2p2+3 = 101
3p2+4 = 151
=> thỏa mãn
+) p>7
Xét có dạng p = 7k+1, 7k+2, 7k+3, 7k-1, 7k-2, 7k-3 thì không thỏa mãn
Vậy p = 7 để ...
Chịu khó đọc, chẳng biết sao ko dùng đc phần kí tự
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
Xét \(p=2\)
\(\Rightarrow x^3=4+1=5\)
\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)
Xét \(p>2\Rightarrow p\)lẻ
Ta thấy \(2p+1\)lẻ với mọi \(p\)
\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ
Đặt \(x=2a+1\)
\(\Rightarrow\left(2a+1\right)^3=2p+1\)
\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)
\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)
\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)
Mà \(p\)là số nguyên tố
\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)
\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)
\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)
\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)
\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)
\(\Leftrightarrow4p^2+4p+2p+2=0\)
\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)
Vậy với p là số nguyên tố thì x = 3
Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ
Ta đặt x=2k+1 (k thuộc N)
Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1
Vậy đặt 2p=8k3+12k2+6k
<=> p=4k3+6k2+3k=k(4k2+6k+3)
Vì p là số nguyên tối nên k=1 do đó x=3
(a+b)^2>=4ab
1>=4ab
ab<=1/4
a^3+b^3=(a+b)(a^2-ab+b^2)=a^2-ab+b^2=a^2+2ab+b^3-3ab
=(a+b)^2-3ab=1-3ab>=1-3.1/4=1/4
suy ra đpcm
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)