K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2

+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+ Vậy p có dạng 3k+2

Khi đó chia hết cho 3

Vậy 4p+1 là hợp số

tick nha

p là số nguyên tố lớn hơn 3 nên chắc chắn p ko chia hết cho 3

=>2p ko chia hết cho 3

mà 2p+1 nguyên tố

nên 2p+2 chia hết cho 3

=>2(2p+2) chia hết cho 3

=>4p+4 chia hết cho 3

=>4p+1 chia hết cho 3

=>4p+1 là hợp số(đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$. 

Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề) 

$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.

1 tháng 9 2023

Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)

Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)

\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)

Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)

Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)

6 tháng 10 2019

Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1

                                     hoặc 3k+2       ( k\(\in\)N*)

+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)

                                     Do  k\(\in\)N*\(\Rightarrow4k+3>0\)

\(\Rightarrow3\left(4k+3\right)\)là hợp số 

\(\Rightarrow3k+2\)( loại)

+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố) 

\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)

                    Do  k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)

\(\Rightarrow3\left(2k+1\right)\)là hợp sốVậy Nếu 4p+1 là SNT thì 2p+1 là hợp số 
6 tháng 10 2019

Bổ sung chỗ 

\(\Rightarrow p=3k+2\)( loại ) nhé em

NV
1 tháng 3 2023

Do p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3

\(\Rightarrow\) p có dạng \(p=3k+1\) hoặc \(p=3k+2\) với k là số tự nhiên và \(k\ge1\)

Nếu \(p=3k+1\Rightarrow p+2=3k+3=3\left(k+1\right)⋮3\) là hợp số (ktm)

\(\Rightarrow p=3k+2\)

Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\) là hợp số (đpcm)