K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

no biết

25 tháng 10 2017

ko bt àk

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

2 tháng 11 2023

bài 1 :

Ta có: 7x=4y ⇔ x/4=y/7

áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/4=y/7=(y-x)/(7-4)=100/3

⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3

bài 2 

ta có x/5 = y/6 ⇔ x/20=y/24

         y/8 = z/7 ⇔ y/24=z/21

⇒x/20=y/24=z/21

ADTCDTSBN(bài 1 có)

x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16

⇒x= 20 x 23/16 = 115/4

   y= 24x 23/16=138/2

   z=21x23/16=483/16

 

19 tháng 7 2023

a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)

b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)

\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)

d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)

\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)

19 tháng 7 2023

a) �2=�5=�7;�+�+�=56

�2=�5=�7=�+�+�2+5+7=5614=4

⇒{�=4.2=8�=4.5=20�=4.7=28

b) �1,1=�1,3=�1,4(1);2�−�=5,5

(1)⇒2�−�1,1.2−1,3=5,50,9

d) �2=�3=�5;���=−30

�2=�3=�5=���2.3.5=−3030=−1

 

⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5
 

11 tháng 2 2019

Bạn kham khảo tại link này nhé.

Câu hỏi của Mai Lan - Toán lớp 7 - Học toán với OnlineMath

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x−12=y+34=z−56=3x−36=4y+1216=5z−2530=5z−25−3x+3−4y+1230−6−16=(5z−3x−4y)−(25−3−12)8

=50−108=408=5

+) x−12=5⇒x=11

+) y+34=5⇒y=17

+) z−56=5⇒z=35

Vậy bộ số (x;y;z) l

à 

13 tháng 8 2021

Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}=\frac{-3x-4y+5z+3-12-25}{8}=2\)

\(\Rightarrow-3x+3=-12\Leftrightarrow-3x=-15\Leftrightarrow x=5\)

\(\Rightarrow-4y-12=-32\Leftrightarrow-4y=-20\Leftrightarrow y=5\)

\(\Rightarrow5z-25=60\Leftrightarrow z=17\)

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

16 tháng 7 2017

Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{16}=\frac{3x^2}{27}=\frac{4y^2}{64}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x^2}{27}=\frac{4y^2}{64}=\frac{3x^2+4y^2}{27+64}=\frac{91}{91}=1\)

\(\Rightarrow k=1;-1\)

 Với k = 1 => x/3 = 1 => x = 3

                     y/4 = 1 => y = 4

Với k = -1 => x/3 = -1 => x = -3

                      y/4 = -1 => y = -4

Vậy...

16 tháng 7 2017

 Ta co : x/3=y/4

 => 3x2/3.32=4y2/2.42=3x2/27=4y2/32

Áp dụng tính chất dãy tỉ số = nhau ta có :

     3x2/27=4y2/32=3x2+4y2/27+32=91/59

còn lại bạn tính nhé

17 tháng 9 2017

Ta có:

\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\)  và \(y-x=5\)

Áp dụng tính chất của dạy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)

\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)

Vậy \(x=20;y=25\)

b)

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)

\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)

Vậy   \(a=10,5;b=14;c=17,5\)

17 tháng 9 2017

Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)

thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15

Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)

=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)