Tìm x để mỗi căn thức có nghĩa
a) \(\sqrt{2x+7}\)
b) \(\sqrt{\frac{1}{-1+x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
\(a,f\left(x\right)=\sqrt{2x-7}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow2x-7\ge0\Leftrightarrow x\ge\dfrac{7}{2}\)
\(b,f\left(x\right)=\sqrt{-3x+4}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
\(c,f\left(x\right)=\sqrt{1+x^2}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow1+x^2\ge0\)
Mà \(1+x^2\ge0\) với mọi x \( \left(x^2\ge0\Rightarrow x^2+1\ge0\right)\)
\(\sqrt{1+x^2}\) có nghĩa với mọi x
\(a,ĐK:x\in R\)
\(b,ĐK:\dfrac{-7}{8-10x}\ge0\Leftrightarrow8-10x< 0\left(-7< 0\right)\Leftrightarrow x>\dfrac{4}{5}\)
\(c,ĐK:\dfrac{24-6x}{-7}\ge0\Leftrightarrow24-6x\le0\left(-7< 0\right)\Leftrightarrow x\ge4\)
a) Để căn thức bậc 2 có nghĩa \(\Rightarrow3-5x\ge0\Rightarrow x\le\dfrac{3}{5}\)
b) Để căn thức bậc 2 có nghĩa \(\Rightarrow\dfrac{5}{2x+1}\ge0\Rightarrow2x+1>0\Rightarrow x>-\dfrac{1}{2}\)
a) để biểu thức có nghĩa thì \(\dfrac{2x-8}{x^2+1}\ge0\) mà \(x^2+1>0\)
\(\Rightarrow2x-8\ge0\Rightarrow x\ge4\)
b) để biểu thức có nghĩa thì \(\dfrac{-x^2-3}{8x+10}\ge0\) mà \(-x^2-3=-\left(x^2+3\right)< 0\)
\(\Rightarrow8x+10< 0\Rightarrow x< -\dfrac{5}{4}\)
c) để biểu thức có nghĩa thì \(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)
a) ĐKXĐ: \(x\ge4\)
b) ĐKXĐ: \(x< -\dfrac{5}{4}\)
c) ĐKXĐ: \(x\ne1\)
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a) \(\sqrt{4x^2-16}\)
\(=\)\(\sqrt{\left(2x\right)^2-4^2}\)
\(=\sqrt{\left(2x+4\right)\left(2x-4\right)}\)
để phương trình trên có nghĩa
⇒2x-4≥0
⇒x≥2
a) \(ĐK:4x^2-16\ge0\)
\(\Leftrightarrow4x^2\ge16\Leftrightarrow x^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
b) \(ĐK:9x^2-25\ge0\)
\(\Leftrightarrow9x^2\ge25\)\(\Leftrightarrow x^2\ge\dfrac{25}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{3}\\x\le-\dfrac{5}{3}\end{matrix}\right.\)
88\110
\(\frac{1}{\sqrt{x-1}}\)
a) sai đề