\(\sqrt{-x-8}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)

b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)

23 tháng 4 2017

cho hỏi là lớp mấy vậylimdim

23 tháng 4 2017

cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho

11 tháng 8 2017

a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)

b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)

d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

27 tháng 5 2018

1)

a) \(6=\sqrt{36}< \sqrt{40}\)

b) \(3=\sqrt{9}< \sqrt{10}\)

c) \(2\sqrt{3}< 2\sqrt{4}=4\)

d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)

e) \(7=\sqrt{49}< \sqrt{50}\)

2)

a) \(x\ge0\)

b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)

c) \(5-a\ge0\Leftrightarrow a\le5\)

d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

e) \(-3< x< 1\)

f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)

b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)

d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)

e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)

f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)

7 tháng 10 2017

trả lời giúp mk đi mà chiều nộp bài rùi huhu

16 tháng 12 2017

a) \(\dfrac{1}{2-\sqrt{x}}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

vậy......

b) \(\dfrac{3}{\sqrt{x^2}-1}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1\ge0\\x^2-1\ne0\end{matrix}\right.\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left|x\right|>1\Leftrightarrow-1< x< 1\)

vậy....

c) \(\sqrt{2x^2+3}\)

\(x^2\ge0\forall x\Rightarrow2x^2\ge0\Rightarrow2x^2+3>0\)

vậy căn thức trên có nghĩa với mọi x

d)\(\dfrac{5}{\sqrt{-x^2-2}}\)có nghĩa

\(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\)( không xảy ra)

vậy không có giá trị nào của x để căn thức trên có nghĩa

e) \(\sqrt{x^2+3}\)

làm tương tự với phần c

28 tháng 12 2017

a) đkxđ : \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow0\le x\ne4\)

vậy......

b) đkxđ \(\left\{{}\begin{matrix}x^2-1\ge0\\\sqrt{x^2-1}\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

vậy...........

c) đkxđ :\(2x^2+3\ge0\)

\(\left\{{}\begin{matrix}2x^2\ge0\\3>0\end{matrix}\right.\)

nên : \(2x^2+3\ge0\)

vậy biểu thức trên có nghĩa vs mọi x

e) tg tự như c

2 tháng 1 2019

1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)

2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)

3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)

4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)

5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định

8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)

Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định

2 tháng 1 2019

Thank kiu

31 tháng 5 2018

a/ Để căn thức có nghĩa thì

\(5-7x\ge0\Leftrightarrow-7x\ge-5\Leftrightarrow x\le\dfrac{5}{7}\)

b/ Để căn thức có nghĩ thì:

\(\dfrac{2}{x}\ge0\) mà (x khác 0) => x > 0

c/ Để căn thức có nghĩa thì:

\(\left\{{}\begin{matrix}x+3\ne0\\-\dfrac{2}{x+3}\ge0\end{matrix}\right.\)

\(\Rightarrow\dfrac{-2}{x+3}>0\Leftrightarrow x+3< 0\Leftrightarrow x< -3\)

d/ Để căn thức có nghĩa thì: \(\left\{{}\begin{matrix}3-x\ne0\\\dfrac{x-2}{3-x}\ge0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\3-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x>3\end{matrix}\right.\end{matrix}\right.\)<=> \(2\le x< 3\)

e/ Để căn thức có nghĩ thì:

\(x^2-x-12\ge0\)

\(\Leftrightarrow x^2+3x-4x-12\ge0\)

\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)\ge0\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\x-4\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-3\end{matrix}\right.\)

Vậy x >= 4 hoặc x<= 3 thì căn thức có nghĩa

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Để biểu thức có nghĩa thì:

a) \(-7x\geq 0\Leftrightarrow x\leq 0\)

b) \(8-x\geq 0\Leftrightarrow x\leq 8\)

c) \(3x+11\geq 0\Leftrightarrow 3x\geq -11\Leftrightarrow x\geq \frac{-11}{3}\)

d) \(\frac{2x}{5}\geq 0\Leftrightarrow x\geq 0\)

e) \(-7x+5\geq 0\Leftrightarrow 5\geq 7x\Leftrightarrow x\leq \frac{5}{7}\)

f) \(\frac{1}{-2+x}\geq 0\Leftrightarrow -2+x>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

g) \(2+x^2\geq 0\) :Luôn đúng với mọi $x$ do \(x^2\geq 0\Rightarrow x^2+2\geq 2>0\)

h) \(\left\{\begin{matrix} x+7\geq 0\\ x-8\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\geq -7\\ x\geq 8\end{matrix}\right.\Rightarrow x\geq 8\)

i) \((x+2)(x-3)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x+2\geq 0; x-3\geq 0\\ x+2\leq 0; x-3\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\geq -2; x\geq 3\\ x\leq -2; x\leq 3\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\geq 3\\ x\leq -2\end{matrix}\right.\)

k) \(\left\{\begin{matrix} \frac{x+5}{3-x}\geq 0\\ 3-x\neq 0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x+5\geq 0; 3-x>0\\ x+5\leq 0; 3-x< 0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x\geq -5; x<3 \\ x\leq -5; x>3(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow 3> x\geq -5\)