2^x+2^x+1+2^x+2+...+2^x+2021=2^2026-16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1996 x 1997 x 1998 x 1999 + 2021 x 2022 x 2023 x 2024
A = (1996 x 1997) x (1998 x 1999) + (2021 x 2022) x (2023 x 2024)
A = \(\overline{..2}\) x \(\overline{..2}\) + \(\overline{..2}\) x \(\overline{..2}\)
A = \(\overline{..4}\) + \(\overline{..4}\)
A = \(\overline{..8}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`5 \times 72 \times 10 \times 2`
`= 5 \times 2 \times 10 \times 72`
`= 10 \times 10 \times 72`
`= 100 \times 72`
`= 7200`
`b)`
`40 \times 125`
`= 4 \times 10 \times 25 \times 5`
`= (5 \times 10) \times (4 \times 25)`
`= 50 \times 100`
`= 5000`
`c)`
`4 \times 2021 \times 25`
`= (4 \times 25) \times 2021`
`= 100 \times 2021`
`= 202100`
`d)`
`16 \times 6 \times 25`
`= 4 \times 4 \times 6 \times 25`
`= (4 \times 25) \times 4 \times 6`
`= 100 \times 24`
`= 2400`
`2,`
`a)`
`24 \times 57 + 43 \times 24`
`= 24 \times (57+43)`
`= 24 \times 100`
`= 2400`
`b)`
`12 \times 19 + 80 \times 12 +12`
`= 12 \times (19 + 80 + 1)`
`= 12 \times 100`
`= 1200`
`c)`
`(36 \times 15 \times 169) \div (5 \times 18 \times 13)`
`= 36 \times 15 \times 169 \div 5 \div 18 \div 13`
`= 6 \times 6 \times 3 \times 5 \times 13 \times 13 \div 5 \div 3 \times 6 \div 13`
`= (6 \div 6) \times (3 \div 3) \times (5 \div 5) \times (13 \div 13) \times 6 \times 13`
`= 6 \times 13`
`= 78`
`d)`
`(44 \times 52 \times 60) \div ( 11 \times 13 \times 15)`
`= 44 \times 52 \times 60 \div 11 \div 13 \div 15`
`= 4 \times 11 \times 13 \times 4 \times 15 \times 4 \div 11 \div 13 \div 15`
`= (11 \div 11) \times (13 \div 13) \times (15 \div 15) \times 4 \times 4 \times`
`= 4 \times 4 \times 4`
`= 64`
`3,`
`a)`
`x - 280 \div 35 = 5 \times 54`
`x - 8 = 270`
`x = 270 + 8`
`x = 278`
`b)`
`(x - 280) \div 35 = 54 \div 4`
`(x - 280) \div 35 = 13,5`
`x - 280 = 13,5 \times 35`
`x - 280 = 472,5`
`x = 472,5 + 280`
`x = 752,5`
`c)`
`(x - 128 + 20) \div 192 = 0`
`x - 128 + 20 = 0 \times 192`
`x - 128 + 20 = 0`
`x - 108 = 0`
`x = 0 + 108`
`x = 108`
`d)`
`4 \times (x + 200) = 460 + 85 \times 4`
`4 \times (x+200) = 460 + 340`
`4 \times (x+200) = 800`
`x + 200 = 800 \div 4`
`x + 200 = 200`
`x = 200 - 200`
`x = 0`
`4,`
`a)`
`7/12 - 5/12`
`= (7 - 5)/12`
`= 2/12`
`= 1/6`
`b)`
`8/11 + 19/11`
`= (8+19)/11`
`= 27/11`
`c)`
`3/8 + 5/12`
`= 9/24 + 10/24`
`= 19/24`
`d)`
`3/4 + 7/12`
`= 9/12 + 7/12`
`= 16/12`
`= 4/3`
`5,`
`a)`
`x - 6/7 = 5/2`
`x = 5/2 + 6/7`
`x = 47/14`
`b)`
`12/7 \div x + 2/3 = 7/5`
`12/7 \div x = 7/5 - 2/3`
`12/7 \div x = 11/15`
`x = 12/7 \div 11/15`
`x = 180/77`
`@` `\text {Kaizuu lv uuu}`
Đặt \(2020-x=u;x-2021=v\)thì \(u+v=-1\)
Phương trình trở thành \(\frac{u^2+uv+v^2}{u^2-uv+v^2}=\frac{19}{49}\Leftrightarrow30u^2+30v^2+68uv=0\)
\(\Leftrightarrow15\left(u+v\right)^2+4uv=0\Leftrightarrow4uv=-15\Leftrightarrow uv=\frac{-15}{4}\)
hay \(\left(2020-x\right)\left(x-2021\right)=-\frac{15}{4}\Leftrightarrow x^2-4041x+4082416,25=0\)
Dùng công thức nghiệm tìm được x = 2022, 5 hoặc x = 2018, 5
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\Rightarrow x=-2\\ b,\Rightarrow\left(x-2021\right)\left(2022x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{2022}\end{matrix}\right.\\ c,\Rightarrow\left(x^2-9\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3-2x-7\right)=0\\ \Rightarrow\left(x-3\right)\left(-4-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)
Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị
\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)
{ x + y + z = 1 (1)
{ x² + y² + z² = 1 (2)
{ x³ + y³ + z³ = 1 (3)
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0
(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0
⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0
@ Nếu x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0
⇒ S = 1
Tương tự cho trường hợp y + z = 0 và z + x = 0
\(2^x+2^{x+1}+2^{x+2}+\dots+2^{x+2021}=2^{2026}-16\\\Rightarrow 2^x\cdot(1+2+2^2+\dots+2^{2021})=2^4\cdot(2^{2022}-1)\text{ (1) }\)
Đặt \(A=1+2+2^2+\dots+2^{2021}\)
\(2A=2+2^2+2^3+\dots+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+\dots+2^{2022}\right)-\left(1+2+2^2+\dots+2^{2021}\right)\)
\(A=2^{2022}-1\)
Thay \(A=2^{2022}-1\) vào (1), ta được:
\(2^x\cdot\left(2^{2022}-1\right)=2^4\cdot\left(2^{2022}-1\right)\)
\(\Rightarrow2^x=2^4\Rightarrow x=4\)
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2021}=2^{2026}-16\)
Đặt A = 2x + 2x+1 + 2x+2 + ...+ 2x+2021
2A = 2x+1 + 2x+2 + ...+ 2x+2022
\(\Rightarrow\) 2A - A = (2x+1 + 2x+2 + ... + 2x+2022) - (2x + 2x+1 + ... + 2x+2021)
\(\Rightarrow\) A = 2x+2022 - 2x
\(\Rightarrow\) 2x+2022 - 2x = 22026 - 16
\(\Rightarrow\) 2x+2022 - 2x = 24+2022 - 24