K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4

\(2^x+2^{x+1}+2^{x+2}+\dots+2^{x+2021}=2^{2026}-16\\\Rightarrow 2^x\cdot(1+2+2^2+\dots+2^{2021})=2^4\cdot(2^{2022}-1)\text{ (1) }\)

Đặt \(A=1+2+2^2+\dots+2^{2021}\)

\(2A=2+2^2+2^3+\dots+2^{2022}\)

\(2A-A=\left(2+2^2+2^3+\dots+2^{2022}\right)-\left(1+2+2^2+\dots+2^{2021}\right)\)

\(A=2^{2022}-1\)

Thay \(A=2^{2022}-1\) vào (1), ta được:

\(2^x\cdot\left(2^{2022}-1\right)=2^4\cdot\left(2^{2022}-1\right)\)

\(\Rightarrow2^x=2^4\Rightarrow x=4\)

14 tháng 4

 \(2^x+2^{x+1}+2^{x+2}+...+2^{x+2021}=2^{2026}-16\)

Đặt A = 2+ 2x+1 + 2x+2 + ...+ 2x+2021

    2A  = 2x+1 + 2x+2 + ...+ 2x+2022 

\(\Rightarrow\) 2A - A = (2x+1 + 2x+2 + ... + 2x+2022) - (2+ 2x+1 + ... + 2x+2021)

       \(\Rightarrow\) A = 2x+2022 - 2x

        \(\Rightarrow\) 2x+2022 - 2x = 22026 - 16

       \(\Rightarrow\) 2x+2022 - 2x = 24+2022 - 24

5 tháng 9 2019

b. 1404 : [118 - (4x + 6)] = 27

118 - (4x + 6) = 52

4x + 6 = 66

4x = 60

x = 15

5 tháng 9 2019

d) \(5x^2-3x=0\)

\(\Leftrightarrow x\left(5x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)

e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)

f) \(2\left(x-2\right)^2=\left(x-2\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)

g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)

18 tháng 5 2023

Đề có phải là:

\(\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}=4\text{ ?}\)

\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-4=0\)

\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-1-1-1-1=0\)

\(\Rightarrow\left(\dfrac{x+1}{2024}-1\right)+\left(\dfrac{x+2}{2025}-1\right)+\left(\dfrac{x+3}{2026}-1\right)+\left(\dfrac{x+4}{2027}-1\right)=0\)

\(\Rightarrow\left(\dfrac{x+1-2024}{2024}\right)+\left(\dfrac{x+2-2025}{2025}\right)+\left(\dfrac{x+3-2026}{2026}\right)+\left(\dfrac{x+4-2027}{2027}\right)=0\)

\(\Rightarrow\dfrac{x-2023}{2024}+\dfrac{x-2023}{2025}+\dfrac{x-2023}{2026}+\dfrac{x-2023}{2027}=0\)

\(\Rightarrow\left(x-2023\right)\left(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\right)=0\)

Mà \(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\ne0\)

\(\Rightarrow x-2023=0\)

\(\Rightarrow x=0+2023\)

\(\Rightarrow x=2023\)

Vậy, \(x=2023.\)

14 tháng 9 2015

2x+2x+1+2x+2+.....+2x+2020 = 22021 - 1

2x.(1+2+22+....+22020) = 2021 - 1

Đặt M = 1+2+22+...+22020

2M = 2+22+23+...+22021

2M - M = 22021-1

=> M = 22021 - 1

Thay vào, ta có:

2x.(22021 - 1) = 22021 - 1

=> 2x = 1

=> x = 0

21 tháng 8 2021

ai giúp mik với

 

Ta có: \(A=\left(1+\dfrac{2}{3}\right)\cdot\left(1+\dfrac{2}{5}\right)\cdot\left(1+\dfrac{2}{7}\right)\cdot...\cdot\left(1+\dfrac{2}{2021}\right)\)

\(=\dfrac{5}{3}\cdot\dfrac{7}{5}\cdot\dfrac{9}{7}\cdot...\cdot\dfrac{2023}{2021}\)

\(=\dfrac{2023}{3}\)

\(x_1+x_2=x_3+x_4=...=x_{2019}+x_{2020}=2\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}=2.1010=2020\)

\(\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}+x_{2021}=2020+x_{2021}\)

\(\Rightarrow0=2020+x_{2021}\)

\(\Rightarrow x_{2021}=-2020\)

                                     Vậy \(x_{2021}=-2020\)

x−42021+x−32020=x−22019+x−12018

⇔ x−42021+x−32020−x−22019−x−12018=0

⇔ (1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0⇔ x+20172021+x+20172020−x+20172019−x+20172018=0

⇔ (x+2017)(12021+12020−12019−12018)=0

⇔ x + 2017 = 0

⇔ x = -2017

17 tháng 3 2020

\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)

\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)

\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)

\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)

\(\Leftrightarrow x+2019=0\)

\(\Leftrightarrow x=-2019\)