Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022
=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023
=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023
=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022
=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021) - 1/4^2022 - 2023/4^2022 + 2023/4^2023
=> 9S = 4 - 1/4^2022 - 2023/4^2022 + 2023/4^2023
= 4- 2024/4^2022 + 2023/4^2023
Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0
=> 9S < 4 < 9/2
=> S < 1/2 (đpcm)
Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)
4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)
4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))
3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)
Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)
4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)
4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))
3A = 4 - \(\dfrac{1}{4^{2022}}\)
A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)
⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)
S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)
Vậy S < \(\dfrac{1}{2}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5
Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)
=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)
=> 4N= 5N - N =1 - 1/5^k
=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)
Thay vào biểu thức M, ta có:
M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)
=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023
=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4
=> M < 5/16 < 1/3
Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
Số số hạng của S:
9 - 0 + 1 = 10 (số)
Do 10 ⋮ 2 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:
S = (1 + 3) + (3² + 3³) + ... + (3⁸ + 3⁹)
= 4 + 3².(1 + 3) + ... + 3⁸.(1 + 3)
= 4 + 3².4 + ... + 3⁸.4
= 4.(1 + 3² + ... + 3⁸) ⋮ 4
Vậy S ⋮ 4
Lời giải:
$S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2023}{4^{2023}}$
$4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+.....+\frac{2023}{4^{2022}}$
$\Rightarrow 4S-S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2022}}-\frac{2023}{4^{2023}}$
$\Rightarrow 3S+\frac{2023}{4^{2023}}=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2022}}$
$\Rightarrow 4(3S+\frac{2023}{4^{2023}})=4+1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2021}}$
$\Rightarrow 4(3S+\frac{2023}{4^{2023}})-(3S+\frac{2023}{4^{2023}})=4-\frac{1}{4^{2022}}$
$\Rightarrow 3(3S+\frac{2023}{4^{2023}})=4-\frac{1}{4^{2022}}$
$9S=4-\frac{1}{4^{2022}}-\frac{2.2023}{4^{2023}}<4$
$\Rightarrow S< \frac{4}{9}< \frac{1}{2}$