K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1

\(\Leftrightarrow6-2xy=3x\Leftrightarrow6=x\left(2y+3\right)\)

\(\Rightarrow x=\dfrac{6}{2y+3}\left(y\ne-\dfrac{3}{2}\right)\) (1)

x nguyên khi \(6⋮\left(2y+3\right)\Rightarrow\left(2y+3\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow y=\left\{-\dfrac{9}{2};-3;-\dfrac{5}{2};-2;-1;-\dfrac{1}{2};0;\dfrac{3}{2}\right\}\) Do y nguyên

\(\Rightarrow y=\left\{-3;-2;-1;0\right\}\) Thay lần lượt các giá trị của y vào (1) để tìm các giá trị tương ứng của x

11 tháng 5 2023

\(\dfrac{x}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{y+3}\)  Đk (\(y\ne-3\))⇒ \(\dfrac{2x+3}{6}\) = \(\dfrac{1}{y+3}\) ⇒ (2\(x\)+3)(y+3) = 6

Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}

Lập bảng ta có:

2\(x\) +3  -6 -3 -2 -1 1 2 3 6
\(x\) -9/2 -3 -5/2 -2 -1 -1/2 0 \(\dfrac{3}{2}\)
y+3 -1 -2 -3 -6 6 3 2 1
y -4 -5 -6 -9 3 0 -1 -2

 

Từ bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:

(\(x\), y) = ( -3; -5); ( -2; -9); ( -1; 3); (0; -1); 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$

$\frac{6+xy}{3x}=\frac{1}{6}$

$\frac{2(6+xy)}{6x}=\frac{x}{6x}$

$\Rightarrow 2(6+xy)=x$

$\Rightarrow 12+2xy-x=0$

$12=x-2xy$

$12=x(1-2y)$

$\Rightarrow 1-2y$ là ước của $12$

Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$

$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$

$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)

20 tháng 8 2023

\(\dfrac{x-1}{9}+\dfrac{1}{3}=\dfrac{1}{y+2}\)

\(\dfrac{x-1}{9}+\dfrac{3}{9}=\dfrac{1}{y+2}\)

\(\dfrac{x-1+3}{9}=\dfrac{1}{y+2}\)

\(\dfrac{x-\left(1-3\right)}{9}=\dfrac{1}{y+2}\)

\(\dfrac{x-\left(-2\right)}{9}=\dfrac{1}{y+2}\)

\(\dfrac{x+2}{9}=\dfrac{1}{y+2}\)

\(\left(x+2\right)\left(y+2\right)=9\)

=> (X+2) ; (y+2) ϵ Ư(9)

TH1: x+2 = 1 => x = -1

y+2=9 => y = 7

TH2: x+2 = 9 => x = 7

=> y +2 = 1 => y =-1

TH3:x+2 = -9 => x = -11

y+2 = -1 => y=-3

TH4: x+2 = -1 => x =-3

y+2 = -9 => x=-11

TH5: x+2 = -3 => x =-5

y+2 = -3 => y=-5

TH6: x+2 =3 =>  x = 1

y+2=3 => y=1

=>\(\dfrac{xy+x-3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>2(xy+x-3)=y+1

=>2xy+2x-6-y-1=0

=>2x(y+1)-y-1=6

=>(y+1)(2x-1)=6

=>\(\left(2x-1;y+1\right)\in\left\{\left(1;6\right);\left(6;1\right);\left(-1;-6\right);\left(-6;-1\right);\left(2;3\right);\left(3;2\right);\left(-2;-3\right);\left(-3;-2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;5\right);\left(\dfrac{7}{2};0\right);\left(-1;-7\right);\left(-\dfrac{5}{2};-1\right);\left(\dfrac{3}{2};2\right);\left(2;1\right);\left(-\dfrac{1}{2};-4\right);\left(-1;-3\right)\right\}\)

23 tháng 1 2022

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

=>3(x+y)=xy

=>3x+3y=xy

=>3x=xy-3y

=>3x=y(x-3)

=>y=\(\dfrac{3x}{x-3}\)

* Vì y nguyên nên 3x ⋮ x-3 

=>3(x-3)+9 ⋮x-3

=>9 ⋮ x-3

=>x-3∈Ư(9)

=>x-3∈{1;-1;3;-3;9;-9}

=>x∈{4;2;6;0;12;-6} mà x nguyên dương và x khác 0 nên x∈{4;2;6;12}

=>y∈{12;-6;6;4} mà y nguyên dương nên y∈{12;6;4}

=>x∈{4;6;12}

- Vậy x=4 thì y=12 ; x=6 thì y=6 ; x=12 thì y=4.

15 tháng 11 2017

Gọi phân thức cần tìm là \(A\)

Ta có:

\(\dfrac{1}{x}.\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}.\dfrac{x+3}{x+4}.\dfrac{x+4}{x+5}.\dfrac{x+5}{x+6}.\dfrac{x+6}{x+7}.\dfrac{x+7}{x+8}.\dfrac{x+8}{x+9}.\dfrac{x+9}{x+10}\)

\(=\dfrac{x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\left(x+8\right)\left(x+9\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)\(=\dfrac{x}{x+10}\)

Suy ra:

\(\dfrac{1}{x}.\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}.\dfrac{x+3}{x+4}.\dfrac{x+4}{x+5}.\dfrac{x+5}{x+6}.\dfrac{x+6}{x+7}.\dfrac{x+7}{x+8}.\dfrac{x+8}{x+9}.\dfrac{x+9}{x+10}.A=1\)

\(\Leftrightarrow\dfrac{x}{x+10}.A=1\)

\(\Leftrightarrow A=\dfrac{x+10}{x}\)

Vậy phân thức cần điền vào chỗ trống là \(\dfrac{x+10}{x}\)

19 tháng 3 2023

(2,1),(1,5),

15 tháng 12 2023

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)

\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)

\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)

b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)

\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)

Bài 3:

a: Sửa đề: AMCN

Ta có: ABCD là hình bình hành

=>BC=AD(1)

Ta có: M là trung điểm của BC

=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)

Ta có: N là trung điểm của AD

=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra BM=MC=NA=ND

Xét tứ giác AMCN có

MC//AN

MC=AN

Do đó: AMCN là hình bình hành

b: Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)

nên ABMN là hình thoi

c: Ta có: BM//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

=>\(\widehat{EBM}=60^0\)

Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)

nên ANME là hình thang cân

=>AM=NE