K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

=>3(x+y)=xy

=>3x+3y=xy

=>3x=xy-3y

=>3x=y(x-3)

=>y=\(\dfrac{3x}{x-3}\)

* Vì y nguyên nên 3x ⋮ x-3 

=>3(x-3)+9 ⋮x-3

=>9 ⋮ x-3

=>x-3∈Ư(9)

=>x-3∈{1;-1;3;-3;9;-9}

=>x∈{4;2;6;0;12;-6} mà x nguyên dương và x khác 0 nên x∈{4;2;6;12}

=>y∈{12;-6;6;4} mà y nguyên dương nên y∈{12;6;4}

=>x∈{4;6;12}

- Vậy x=4 thì y=12 ; x=6 thì y=6 ; x=12 thì y=4.

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

2 tháng 9 2023

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{x-y}\left(ĐK:x>0;y>0\right)\)

\(\Rightarrow\dfrac{y-x}{xy}=\dfrac{1}{x-y}\)

\(\Rightarrow\left(y-x\right)\left(x-y\right)=xy\)

\(\Rightarrow-\left(x-y\right)^2=xy\) \(^{\left(1\right)}\)

Vì x, y nguyên dương khác nhau và khác 0 ⇒ \(xy>0 \) \(^{\left(2\right)}\)

Ta thấy: \(\left(x-y\right)^2>0\forall x;y\in Z;x\ne y\)

\(\Rightarrow-\left(x-y\right)^2< 0\forall x;y\in Z;x\ne y\)  \(^{\left(3\right)}\)

Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) Không tìm được hai số x, y nguyên dương khác nhau thoả mãn yêu cầu đề bài.

#\(Urushi\)

3 tháng 9 2023

Bổ sung thêm cho mình chỗ ĐK là x ≠ y nữa nhé :>.

30 tháng 9 2021

\(\dfrac{1}{3}< \dfrac{x}{y}< \dfrac{1}{2}\Rightarrow\dfrac{4}{12}< \dfrac{x}{y}< \dfrac{6}{12}\Rightarrow\dfrac{x}{y}=\dfrac{5}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{12}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{12}=\dfrac{2x}{10}=\dfrac{3y}{36}=\dfrac{2x+3y}{10+36}=\dfrac{19}{46}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{46}\\y=\dfrac{114}{23}\end{matrix}\right.\)

Mà \(x,y\in Z\)

Vậy ko có x,y nguyên thỏa mãn đề

6 tháng 11 2021

khó phết

27 tháng 4 2022

\(\Leftrightarrow40+2xy=x\left(x\ne0\right)\)

\(\Leftrightarrow x\left(1-2y\right)=40\Leftrightarrow x=\dfrac{40}{1-2y}\)

Do 2y chẵn => 1-2y lẻ

Để x nguyên thì 1-2y là ước của 40

\(\Rightarrow1-2y=\left\{-5;-1;1;5\right\}\Rightarrow y=\left\{3;1;0;-2\right\}\)

\(\Rightarrow x=\left\{-8;-40;40;8\right\}\)

 

16 tháng 1

\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\) 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)