\(\dfrac{12x-15y}{7}\)=\(\dfrac{20z-12x}{9}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4

25 tháng 8 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)

\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)

\(y=12\cdot7=84\)

Vậy x = 30 ; y = 84

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot3=6\)

\(y=2\cdot2=4\)

Vậy x = 6 ; y = 4

c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot2=4\)

\(y=3\cdot2=6\)

\(z=4\cdot2=8\)

Vậy x = 4 ; y = 6 ; z = 8

d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)

\(\Rightarrow x=-3\cdot2=-6\)

\(y=-3\cdot3=-9\)

\(z=-3\cdot4=-12\)

Vậy \(x=-4;y=-6;z=-8\)

26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you

 

15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)

30 tháng 5 2018

Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!

Áp dụng t/c DTSBN ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)

=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)

=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)

=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)

=> x+y+z = 1/2 (4)

Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)

=> 2x = 1/2-x+1

=> 3x = 3/2 => x=1/2

Ta có: Từ (2) => 2y = x+z+1

=> 2y + y = x+y+z+1

=> 3y = 1/2+1 (theo 4) => 3y=3/2

=> y=1/2

Ta có : Từ (4) => x+y+z=1/2

=>1/2 + 1/2 +z = 1/2

=> z=-1/2

Vậy ( x;y;z)=(1/2;1/2;-1/2)

3 tháng 11 2018

e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)

\(\Leftrightarrow x=4k,y=5k\) (1)

Theo bài ra ta có: xy = 80

Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)

3 tháng 11 2018

a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)

7 tháng 11 2018

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

7 tháng 11 2018

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)