K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

a) Vì tam giác ABC cân tại A có AH là đường cao đồng thời là đường phân giác và đường trung trực ứng với BC

Vì AH là tia phân giác góc BAC

=>góc BAH= góc CAH

Vì AH là đường trung trực ứng với BC

=> HB=HC

Vậy HB=HC   ; góc BAH = góc CAH

b)Vì HB=HC

Mà HB+HC=8cm

=> HB=HC=4cm

Áp dụng định lý Pi-ta-go cho tam giác AHB vuông tại H có:

\(AH^2+HB^2=AB^2\)

    \(AH^2+4^2=5^2\)

   \(AH^2+16=25\)

              \(AH^2=9\)

=>\(AH=3\)

Vậy \(AH=3\)

c)Xét tam giác AHD và tam giác AHE có:

Góc ADH = góc AEH (=90độ)

AH chung

Góc DAH = góc EAH ( theo phần a)

=> tam giác DAH = tam giác EAH (g-c-g)

=>AD=AE

=> tam giác ADE cân tại A

=>\(\widehat{ADE}=\frac{\widehat{BAC}}{2}\)(1)

Vì tam giác ABC cân tại A

=>\(\widehat{ABC}=\frac{\widehat{BAC}}{2}\)(2)

Từ (1),(2)

=>\(\widehat{ADE}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

=>DE//BC

5 tháng 2 2016

a, tam giác ABH và tam giác CAH có: 

AB = AC

AH: cạnh chung

góc H1 = góc H2 (=90*) 

=> tam giác ABH = tam giác CAH

=> HB = HC (cạnh tương ứng )

=> góc BAH = góc CAH ( góc tương ứng)

ko chắc đúng đâu 

5 tháng 2 2016

b, bn tự tính nhé !!

c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC? 

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=) HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=) HD<HC

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C

Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
 AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2    = 5 mũ 2 
AH mũ 2 + 16           = 25
AH mũ 2                  = 25 - 16
AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=> HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=> HD<HC

10 tháng 5 2015

A B C H D E

a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...

Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC

=>HB=HC

b) Ta có HB+HC=BC

=>HB=HC=BC/2=8/2=4cm

Ap dụng định lí Py-ta-go vào tam giác BAH ta có

AH2+BH2=AB2

   AH2=AB2-BH2

  AH2= 52-42

AH2=25-16=9

=>AH=3

C)Xét tam giác vuông BDH và CEH ta có 

HB=HC(theo câu a)

Góc B=C(Vì tam giác ABC cân ở A)

=>tam giác BDH=CEH(ch-gn)

=>HD=HE(tương ứng)

Vậy tam giác HDE có HD=HE nên cân ở H

 

a, xét tam giác HAB và tam giác HAC ta có

  AB=AC(gt)

 góc BAH= góc AHC ( 2 góc tương ứng )

AH ( chung)

=>tam giác AHD = Tam giác AHC ( c. g.c)

=> HB=HC ( hai cạnh tương ứng )

=>góc AHC=góc AHD ( hai góc tương ứng)

b,xét tam giác ADH và tam giác AEH ta có 

 AH ( chung )

góc ADH = góc AEH ( ..)

c. Tam giac ABC vuông tại C

           2       2       2

=> BC   =AB  +AC

       2       2        2

=>10 =  9    + AC

        2

=>AC = 100-81 =19

=>AC = 4.35

1 tháng 3 2021

khocroixl nhung ma sai roibucminh

9 tháng 4 2018

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Hai cạnh góc vuông)

b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\)  (Hai góc so le trong)

Lại có \(\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)

Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)

\(\Rightarrow\) tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)

Tóm lại: \(2\left(AH+BK\right)>3AC\)

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

⇒ΔAHB=ΔAHC  (Hai cạnh góc vuông)

b) Do HK // AB nên ^AHK=^BAH  (Hai góc so le trong)

Lại có ^BAH=^CAH

⇒^KAH=^KHA

Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)

 tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC

Tóm lại: 2(AH+BK)>3AC

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ). a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\) b) TÍnh AH. c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân. 2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR: a) \(\Delta ABM=\Delta ECM\). b) AC > CE. c)...
Đọc tiếp

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ).

a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\)

b) TÍnh AH.

c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân.

2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR:

a) \(\Delta ABM=\Delta ECM\).

b) AC > CE.

c) \(\widehat{BAM}>\widehat{MAC.}\)

3) Cho góc nhọn \(\widehat{xOy}\). Gọi M là 1 điểm thuộc tia phân giác \(\widehat{xOy}\), kẻ \(MA\perp Ox\left(A\in Ox\right)\), \(MB\perp Oy\left(B\in Oy\right)\).

a) CMR: MA = MB và \(\Delta OAB\) cân.

b) Đường thẳng BM cắt Ox tại D, đường thẳng AM cắt Oy tại E. CMR: MD = ME.

c) C/m: \(OM\perp DE\)

" hép mê " giải nhanh nha, mai mình cần gấp rùi ! Tuy hơi dài nhưng các bạn lm từng bài một cx đc !huhu

1

Câu 1: 

a: Ta có:ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác và H là trung điểm của BC

hay \(\widehat{BAH}=\widehat{CAH}\) và HB=HC

b: HB=HC=BC/2=4(cm)

nên AH=3(cm)

c: Sửa đề; D và E là chân đường cao kẻ từ H xuống AB và AC

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔAHD=ΔAHE

Suy ra: HD=HE

hay ΔHDE cân tại H