Cho x, y \(\in\) N*; 5x+y \(⋮\)5y+x. CM x\(⋮\)y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(A=dfrac{x}{x+y+z}+dfrac{y}{y+z+t}+dfrac{z}{z+t+x}+dfrac{t}{t+x+y})
Giả sử: (Ain N) thì
(left{{}egin{matrix}dfrac{x}{x+y+z}in N\dfrac{y}{y+z+t}in N\dfrac{z}{z+t+x}in N\dfrac{t}{x+y+t}in Nend{matrix} ight.) (Leftrightarrowleft{{}egin{matrix}x⋮x+y+z\y⋮y+z+t\z⋮z+t+x\t⋮t+x+yend{matrix} ight.)
Vì (x;y;z;tin Ncircledast) nên
(left{{}egin{matrix}xge x+y+z\yge y+z+t\zge z+t+x\tge t+x+yend{matrix} ight.Leftrightarrowleft{{}egin{matrix}x+yle0\z+tle0\t+xle0\x+yle0end{matrix} ight.)
Điều trên ko thể xảy ra, (A otin N)
\(xy=\dfrac{xy}{2}+\dfrac{xy}{2}>\dfrac{2y}{2}+\dfrac{2x}{2}=x+y\)
\(x\) + \(xy\) + y = 5 (\(x;y\in\) N)
(\(x\) + \(x\)y) = 5 - y
\(x\).(1 + y) = 5 - y
\(x\) = \(\dfrac{5-y}{1+y}\)
\(x\) \(\in\) N ⇔ 5 - y \(⋮\) 1 + y ⇒ -(y + 1) + 6 ⋮ 1 + y
⇒ 6 ⋮ 1 + y ⇒ y + 1 \(\in\) Ư(6) = {1; 2; 3; 6} ⇒ y \(\in\) {0; 1; 2; 5}
Lập bảng ta có:
\(y\) | 0 | 1 | 2 | 5 |
\(x\) = \(\dfrac{5-y}{1+y}\) | 5 | 2 | 1 | 0 |
Theo bảng trên ta có:
Các cặp số tự nhiên \(x\); y thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (5; 0); (2;1); (1;2); (0; 5)