Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^3+y^3+z^3=x+y+z+2020\)
\(\Rightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2020\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)+y\left(y-1\right)\left(y+1\right)+z\left(z-1\right)\left(z+1\right)=2020\)
Ta có tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
=> \(VT⋮6\)
Mà VP \(⋮̸\) 6
\(\Rightarrow\) Phương trình vô nghiệm
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Bạn thiếu giả thiết \(x,y,z>0\) nhé.
Theo giả thiết \(xyz=xy+yz+zx.\) Từ đó ta có\(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+zx}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}.\)
Theo bất đẳng thức Bunhiacốpxki, \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}.\) Do đó
\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}=\sqrt{x}+\sqrt{\frac{yz}{x}}\), hay ta có \(\sqrt{x+yz}\ge\sqrt{x}+\sqrt{\frac{yz}{x}}.\)
Tương tự ta có hai bất đẳng thức nữa\(\sqrt{y+zx}\ge\sqrt{y}+\sqrt{\frac{xz}{y}},\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\). Cộng cả ba bất đẳng thức lại cho ta
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{zx}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\left(\sqrt{\frac{yz}{x}}+\sqrt{\frac{zx}{y}}+\sqrt{\frac{xy}{z}}\right)\)
\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+zx}{\sqrt{xyz}}\)
\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}.\) (ĐPCM)
BĐT <=> \(\sqrt{\frac{x+yz}{xyz}}+\sqrt{\frac{y+xz}{xyz}}+\sqrt{\frac{z+xy}{xyz}}\ge1+\sqrt{\frac{1}{xy}}+\sqrt{\frac{1}{yz}}+\sqrt{\frac{1}{xz}}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
Khi đó \(a+b+c=1\)
BĐT <=>\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Ta có \(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)
Khi đó \(VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=VP\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=3
BĐT cho tương đương với
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Với \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z};a+b+c=1\)
Ta có:
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}\)
\(=\sqrt{a^2+a\left(b+c\right)+bc}\ge\sqrt{a^2+2a\sqrt{bc}+bc}=a+\sqrt{bc}\)
Tương tự
\(\sqrt{b+ca}\ge b+\sqrt{ca};\sqrt{c+ab}\ge c+\sqrt{ab}\)
Từ đó ta có đpcm
Dấu "=" xảy ra khi x=y=z=3
Đầu tiên CM BDT :
\(1+x^3+y^3\ge xy"x+y+z"\)
\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"
\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)
\(\Leftrightarrow"x+y""x-y"^2\ge0\)
BDT luôn đúng theo gt
\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)
\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
Tương tự
\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)
\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
AD BDT Cauchy cho các số > 0
\(x+y+z\ge3\). \(\sqrt[3]{xyz}=3\)
\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)
\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow DPCM\)
Vậy Dấu \(= khi x=y=z=1\)
P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu
Áp dụng giả thiết ta được: \(\dfrac{x}{{\sqrt {1 + {x^2}} }} = \dfrac{x}{{\sqrt {{x^2} + xy + yz + zx} }} = \dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} \)
Áp dụng bất đẳng thức Cauchy ta được:
\(\dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} = \sqrt {\dfrac{{{x^2}}}{{\left( {x + y} \right)\left( {x + z} \right)}}} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{z + x}}} \right) \)
Do đó ta được: \(\dfrac{x}{{\sqrt {1 + {x^2}} }} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{z + x}}} \right) \)
Hoàn toàn tương tự ta được:
\( \dfrac{y}{{\sqrt {1 + {y^2}} }} \le \dfrac{1}{2}\left( {\dfrac{y}{{x + y}} + \dfrac{y}{{y + z}}} \right)\\ \dfrac{z}{{\sqrt {1 + {z^2}} }} \le \dfrac{1}{2}\left( {\dfrac{z}{{z + x}} + \dfrac{z}{{y + z}}} \right) \)
Cộng theo vế các bất đẳng thức trên ta được:
\( \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}\\ \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{z + x}} + \dfrac{y}{{x + y}} + \dfrac{y}{{y + z}} + \dfrac{z}{{z + x}} + \dfrac{z}{{y + z}}} \right) = \dfrac{3}{2} \)
Vậy bất đẳng thức được chứng minh.
Đẳng thức xảy ra khi và chỉ khi \(x = y = z = \dfrac{1}{{\sqrt 3 }} \)