K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>xy=-18

=>x,y khác dấu

mà x<y<0 

nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài

b: =>(x+1)(y-2)=3

\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)

c: \(\Leftrightarrow8x-4=3x-9\)

=>5x=-5

hay x=-1

Ta có: 2x=y3=z52x=y3=z5

⇒x=y6=z25⇒x=y6=z25và x+y−z2=−20x+y−z2=−20

Áp dụng tính chất dãy tỉ số bằng nhau, ta được

x=y6=z25=x+y−z21+6−5=−202=−10x=y6=z25=x+y−z21+6−5=−202=−10(vìx+y−z2=−20x+y−z2=−20)

⇒\hept⎧⎨⎩x=−10y=−10⋅6=−60z2=−10⋅5=−50⇒\hept⎧⎨⎩x=−10y=−60z=−100

7 tháng 10 2021

Có:

x2=y3=z5 và x+y+z=20

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x2=y3=z5=x+y+z2+3+5=2010=2

⇒x2=2 ⇒x=2.2=4

⇒y3=2 ⇒y=2.3=6

⇒z5=2 ⇒z=2.5=10

Vậy x=4y=6 và z=10.

Chúc bạn học tốt!

22 tháng 8 2020

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

Thay \(x-y=7\)vào biểu thức ta được: 

\(A=7^2+2.7+37=49+14+37=100\)

b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)

mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)

\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)

Vậy \(xy=2\)

22 tháng 8 2020

a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37

= x2 + 2x + y2 - 2y - 2xy + 37

= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37

= ( x - y )2 + 2( x - y ) + 37

Thế x - y = 7 vào A ta được :

A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100

Vậy A = 100 khi x - y = 7

b) x + y = 3 => ( x + y )2 = 9

=> x2 + 2xy + y2 = 9

=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )

=> 2xy = 4

=> xy = 2 

14 tháng 12 2021

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

NV
7 tháng 5 2020

\(A=sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\Rightarrow-\sqrt{2}\le sinx+cosx\le\sqrt{2}\)

\(A_{max}=\sqrt{2}\) khi \(sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{4}+k2\pi\)

\(A_{min}=-\sqrt{2}\) khi \(x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\Rightarrow x=-\frac{3\pi}{4}+k2\pi\)

2 câu sau y hệt câu đầu:

\(B=sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)

\(C=sin4x+cos4x=\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le C\le\sqrt{2}\)