𝑥 3 − 𝑦 3 + 𝑥 − 𝑦
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>xy=-18
=>x,y khác dấu
mà x<y<0
nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài
b: =>(x+1)(y-2)=3
\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
c: \(\Leftrightarrow8x-4=3x-9\)
=>5x=-5
hay x=-1
Ta có: 2x=y3=z52x=y3=z5
⇒x=y6=z25⇒x=y6=z25và x+y−z2=−20x+y−z2=−20
Áp dụng tính chất dãy tỉ số bằng nhau, ta được
x=y6=z25=x+y−z21+6−5=−202=−10x=y6=z25=x+y−z21+6−5=−202=−10(vìx+y−z2=−20x+y−z2=−20)
⇒\hept⎧⎨⎩x=−10y=−10⋅6=−60z2=−10⋅5=−50⇒\hept⎧⎨⎩x=−10y=−60z=−100
Có:
và
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
Vậy ; và .
Chúc bạn học tốt!
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
Thay \(x-y=7\)vào biểu thức ta được:
\(A=7^2+2.7+37=49+14+37=100\)
b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)
mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)
\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)
Vậy \(xy=2\)
a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37
= x2 + 2x + y2 - 2y - 2xy + 37
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37
= ( x - y )2 + 2( x - y ) + 37
Thế x - y = 7 vào A ta được :
A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100
Vậy A = 100 khi x - y = 7
b) x + y = 3 => ( x + y )2 = 9
=> x2 + 2xy + y2 = 9
=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )
=> 2xy = 4
=> xy = 2
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
\(A=sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
Mà \(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\Rightarrow-\sqrt{2}\le sinx+cosx\le\sqrt{2}\)
\(A_{max}=\sqrt{2}\) khi \(sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{4}+k2\pi\)
\(A_{min}=-\sqrt{2}\) khi \(x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\Rightarrow x=-\frac{3\pi}{4}+k2\pi\)
2 câu sau y hệt câu đầu:
\(B=sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)
\(C=sin4x+cos4x=\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le C\le\sqrt{2}\)