K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

\(D=\dfrac{\sqrt{x}-x-7}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-9}{\sqrt{x}+1}=1-\sqrt{x}+1-\dfrac{9}{\sqrt{x}+1}\)

\(=3-\left[\left(\sqrt{x}+1\right)+\dfrac{9}{\sqrt{x}+1}\right]\)\(\le3-2\sqrt{\left(\sqrt{x}+1\right).\dfrac{9}{\sqrt{x}+1}}\) ( BĐT AM-GM)

\(\Leftrightarrow D\le-3\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=\dfrac{9}{\sqrt{x}+1}\Leftrightarrow x=4\)

Vậy \(max_D=-3\)

13 tháng 11 2021

\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)

Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)

Vậy \(D_{max}=-7\Leftrightarrow x=0\)

20 tháng 8 2019

\(D=\frac{3\sqrt{x}+7}{\sqrt{x}+2}=3+\frac{1}{\sqrt{x}+2}\)

Dmax\(\Leftrightarrow\frac{1}{\sqrt{x}+2}\)đạt GTLN\(\Leftrightarrow\sqrt{x}+2\)đạt GTNN

Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\)

\(\Rightarrow D_{max}=\frac{7}{2}\Leftrightarrow x=0\)

giải thích rõ làm sao ra được 3 +\(\frac{1}{\sqrt{x}+2}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

NV
26 tháng 9 2020

\(A\le\sqrt{2\left(3x-5+7-3x\right)}=\sqrt{2.2}=2\)

\(A_{max}=2\) khi \(x=2\)

\(B\le\sqrt{2\left(x-5+23-x\right)}=\sqrt{2.18}=6\)

\(B_{max}=6\) khi \(x=14\)

\(C=-\left(2-x\right)+\sqrt{2-x}+2=-\left(\sqrt{2-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

\(C_{max}=\frac{17}{8}\) khi \(x=\frac{31}{16}\)

\(D\le\frac{1}{2}\left(x^2+1-x^2\right)=\frac{1}{2}\)

\(D_{max}=\frac{1}{2}\) khi \(x=\frac{\sqrt{2}}{2}\)

15 tháng 8 2018

sử dụng bđt     \(\hept{\begin{cases}\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\end{cases}}\)            

cái trên bđt xảy ra khi a=0 hoặc b=0

cái dưới xảy ra khi a=b hoặc b=0

\(B\ge\sqrt{x-5+13-x}\ge\sqrt{8}\)

dấu ''='' xảy ra khi \(\orbr{\begin{cases}x=5\\x=13\end{cases}}\)

\(C\le\sqrt{x-1-x+8}\le\sqrt{7}\)

dấu ''='' xảy ra khi 

\(x=8\)

D ,tương tự a

6 tháng 10 2020

Bạn nguyễn thị lan hương sai maxC rồi nhé, mình chỉ bổ sung phần còn lại 

  \(B\le\sqrt{\left(1^2+1^2\right)\left(x-5+13-x\right)}=4\)(Bunhiacopski)  Dấu bằng xảy ra khi  x=9

Tìm maxD cũng vậy  

9 tháng 8 2023

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

9 tháng 8 2023

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)