Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)
A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)
\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)
B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)
\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)
C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)
Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)
\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)
D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)
\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)
E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)
\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)
F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)
△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)
\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=\sqrt{2.2}=2\)
\(A_{max}=2\) khi \(x=2\)
\(B\le\sqrt{2\left(x-5+23-x\right)}=\sqrt{2.18}=6\)
\(B_{max}=6\) khi \(x=14\)
\(C=-\left(2-x\right)+\sqrt{2-x}+2=-\left(\sqrt{2-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
\(C_{max}=\frac{17}{8}\) khi \(x=\frac{31}{16}\)
\(D\le\frac{1}{2}\left(x^2+1-x^2\right)=\frac{1}{2}\)
\(D_{max}=\frac{1}{2}\) khi \(x=\frac{\sqrt{2}}{2}\)
sử dụng bđt \(\hept{\begin{cases}\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\end{cases}}\)
cái trên bđt xảy ra khi a=0 hoặc b=0
cái dưới xảy ra khi a=b hoặc b=0
\(B\ge\sqrt{x-5+13-x}\ge\sqrt{8}\)
dấu ''='' xảy ra khi \(\orbr{\begin{cases}x=5\\x=13\end{cases}}\)
\(C\le\sqrt{x-1-x+8}\le\sqrt{7}\)
dấu ''='' xảy ra khi
\(x=8\)
D ,tương tự a
Bạn nguyễn thị lan hương sai maxC rồi nhé, mình chỉ bổ sung phần còn lại
\(B\le\sqrt{\left(1^2+1^2\right)\left(x-5+13-x\right)}=4\)(Bunhiacopski) Dấu bằng xảy ra khi x=9
Tìm maxD cũng vậy
Lời giải :
a) \(A=3\sqrt{x-1}+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)
Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)
\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)
\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)
\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
d) \(D=x-3\sqrt{x}+2\)
\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)
\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\)
\(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\)
Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Amin =7 tại x=1
a) Ta có: \(A=x^2+4x+7=x^2+2.x.2+2^2+3=\left(x+2\right)^2+3\ge3\)
Dấu "=" xảy ra <=> x + 2 =0 => x = -2
Vậy AMin = 3 khi và chỉ khi x = -2
b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy BMin = 3/4 khi và chỉ khi x = 1/2
c) \(C=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x+1/2 = 0 <=> x = -1/2
Vậy CMin = 3/4 khi và chỉ khi x = -1/2
e) \(E=x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" không xảy ra
g) \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Vậy GMin = 3/4 khi x = 1/4
\(D=\dfrac{\sqrt{x}-x-7}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-9}{\sqrt{x}+1}=1-\sqrt{x}+1-\dfrac{9}{\sqrt{x}+1}\)
\(=3-\left[\left(\sqrt{x}+1\right)+\dfrac{9}{\sqrt{x}+1}\right]\)\(\le3-2\sqrt{\left(\sqrt{x}+1\right).\dfrac{9}{\sqrt{x}+1}}\) ( BĐT AM-GM)
\(\Leftrightarrow D\le-3\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=\dfrac{9}{\sqrt{x}+1}\Leftrightarrow x=4\)
Vậy \(max_D=-3\)