Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120
a: =>0,2-x=7
=>x=-6,8
b: =>x=6 hoặc x=-6
c: =>x^2=5
hay \(x=\pm\sqrt{5}\)
d: =>x^2=2
hay \(x=\pm\sqrt{2}\)
e: =>x-1=2 hoặc x-1=-2
=>x=-1 hoặc x=3
f: =>2x+1=7 hoặc 2x+1=-7
=>2x=-8 hoặc 2x=6
=>x=3 hoặc x=-4
a) \(\frac{1}{3}+\frac{5x}{3}=7\)
\(\frac{1+5x}{3}=7\)
\(1+5x=7.3\)
\(1+5x=21\)
\(5x=21-1\)
\(5x=20\)
\(x=4\)
b) \(x^2+9=17\)
\(x^2=17-9\)
\(x^2=8\)
\(x=\pm\sqrt{8}\)
b) \(\sqrt{x-2}+3=14\)
\(\sqrt{x-2}=14-3\)
\(\sqrt{x-2}=11\)
\(x-2=121\)
\(x=121+2\)
\(x=123\)
a)\(\frac{1}{3}+\frac{5x}{3}=7\)
\(\frac{1+5x}{3}=7\)
\(\frac{1+5x}{3}=\frac{21}{3}\)
\(\Rightarrow1+5x=21\)
\(5x=21-1\)
\(5x=20\)
\(x=20:5\)
\(x=4\)
vậy x=4
x2+9=17
x2=17-9
x2=8
vô lí vì 8=?2
vậy x\(\in\varnothing\)
\(c)\sqrt{x-2}+3=14\)
\(\sqrt{x-2}=14-3\)
\(\sqrt{x-2}=11\)
m biết làm đến vậy thôi
a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)
=>4x=3/20
hay x=3/80
b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)
c: 2x(x-2/3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{\left(x^2+y^2+2\right)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)
Để \(B_{max}\Leftrightarrow\frac{1}{x^2+y^2+1}max\) hay \(x^2+y^2+1\) min
Vì : \(x^2\ge0;y^2\ge0\forall x;y\)
\(\Rightarrow x^2+y^2\ge0\)
\(\Rightarrow x^2+y^2+1\ge1\)
Dấu "=" xảy ra <=> x = y = 0
Vậy \(B_{max}=\frac{3}{2}\Leftrightarrow x=y=0\)
\(D=\frac{3\sqrt{x}+7}{\sqrt{x}+2}=3+\frac{1}{\sqrt{x}+2}\)
Dmax\(\Leftrightarrow\frac{1}{\sqrt{x}+2}\)đạt GTLN\(\Leftrightarrow\sqrt{x}+2\)đạt GTNN
Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow D_{max}=\frac{7}{2}\Leftrightarrow x=0\)
giải thích rõ làm sao ra được 3 +\(\frac{1}{\sqrt{x}+2}\)