với k\(\inℤ\) chứng minh rằng \(k^2\)+3k+5\(⋮\)11 \(\Leftrightarrow\) k+4\(⋮\)11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phép quy nạp toán học (lớp 6)
Với k = 0: \(2^{3k+1}+5=2^1+5=7⋮7\Rightarrow\)Mệnh đề đúng với k = 1(1)
Giả sử điều đó đúng với k = t tức là \(2^{3t+1}+5⋮7\)(đây là giả thiết qui nạp) (2)
Ta sẽ c/m điều đó cũng đúng với k = t + 1.Tức là c/m:
\(2^{3\left(t+1\right)+1}+5⋮7\)hay \(2^{3t+4}+5⋮7\)
Ta có: \(2^{3t+4}+5=2^3\left(2^{3t+1}+5\right)-35\)
Dễ dàng thấy: \(2^3\left(2^{3t+1}+5\right)⋮7\) (do giả thiết qui nạp)
\(35⋮7\) (hiển nhiên)
Suy ra \(2^3\left(2^{3t+1}+5\right)-35⋮7\)hay \(2^{3t+4}+5⋮7\) hay \(2^{3\left(t+1\right)+1}+5⋮7\) (3)
Từ (1);(2) và (3) theo nguyên lí quy nạp toán học,ta có điều phải c/m
\(2^{3k+1}+5=2^{3k}.2+5=8^k.2+5\)
Ta có: 8 chia 7 dư 1 => \(8^k\)chia 7 dư 1 (vì (7,8)=1)
Đặt: \(8^k\)=7t+1
=> \(2^{3k+1}+5=\)(7t+1).2+5=7t.2+7 chia hết cho 7
Ta có : \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=\left(k^2+k\right)\left(k+2\right)-\left(k^2-k\right)\left(k+1\right)\)
\(=k^3+2k^2+k^2+2k-k^3+k\)
\(=3k^2+3k\)
\(=3k\left(k+1\right)\left(VP\right)\)
\(\Rightarrowđpcm\)
k(k+1)(k+2) -(k-1)k(k+1)
=k(k+1)(k + 2 - k + 1)
= 3k(k+1) đpcm
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)
Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.
Ta có :
\(k^2-5k+8\)chia hết cho 11
Mà \(11k\)chia hết cho 11
\(11\)chia hết cho 11
\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11
\(\Rightarrow k^2+6k+19\)chia hết cho 11
Chứng minh ngược lại :
\(k^2+6k+19\)chia hết cho 11
Mà \(11k;11\)chia hết cho 11
\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11
\(\Rightarrow k^2-5k+8\)chia hết cho 11
Vậy ...
Theo bài ra ta có: k + 4 ⋮ 11
⇒ k - (-4) ⋮ 11
⇒ k \(\equiv\) - 4 (mod 11)
⇒ k2 \(\equiv\) (-4)2 (mod 11)
3k \(\equiv\) 3.(-4)(mod 11)
5 \(\equiv\) 5 (mod 11)
Cộng vế với vế ta có: k2 + 3k + 5 \(\equiv\) 16 - 12 + 5 (mod 11)
⇒ k2 + 3k + 5 \(\equiv\) 9 (mod 11)
Giả sử điều cần chứng minh là đúng thì
k2 + 3k + 5 ⋮ 11 ⇔ 9 ⋮ 11 ( vô lý)
Nên điều giả sử là sai
Vậy với k \(\in\) Z chứng minh rằng k2 + 3k + 5 ⋮ 11 ⇔ k + 4 ⋮ 11 là điều không thể xảy ra.
Bạn xem lại đề có đúng không theo tôi k-4⋮11