Cho \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\). Tìm x; y ; z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
Điều kiện \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
ADTC dãy tỉ số bằng nhau ta có :
\(\frac{\left(y+z+1\right)}{x}=\frac{\left(x+z+2\right)}{y}=\frac{\left(x+y-3\right)}{z}=\downarrow\)
\(=\frac{\left(y+z+1+x+z+2+x+y-3\right)}{\left(x+y+z\right)}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{\left(x+y+z\right)}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\Leftrightarrow y+z=\frac{1}{2}-x\)(1)
\(\frac{\left(y+z+1\right)}{x}=2\Leftrightarrow y+z+1=2x\)
Kết hợp với (1) \(\Rightarrow\frac{1}{2}-x+1=2x\)
\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y+z=0\Leftrightarrow y=-z\)
Ta có : \(\frac{\left(x+y-3\right)}{z}=2\)
\(\Leftrightarrow x+y-3=2z\)
\(\Leftrightarrow y-2z=\frac{5}{2}\)
Do: \(y=-z\Rightarrow-3z=\frac{5}{2}\Leftrightarrow z=-\frac{5}{6}\)
\(\Rightarrow y=\frac{5}{6}\)
Vậy nghiệm tìm đc : \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{5}{6};-\frac{5}{6}\right)\)
M = x+y/z + x+z/y + y+z/x
M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x
M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1
M = 2020.1/202 - 3
M = 10 - 3 = 7
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{x+z}+\frac{y^2}{x+z}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
<=>\(\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{x+z}+\frac{xy+yz}{x+z}+\frac{z^2}{x+y}+\frac{xz+yz}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{x\left(y+z\right)}{y+z}+\frac{y^2}{x+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z^2}{x+y}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)