Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)
Tương tự: \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)
\(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)
Suy ra: \(A+\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)
\(=2.\left(x+y+z\right)\)
Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)
Mình có sai chỗ nào không nhỉ?
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
\(\Rightarrow \left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)(x+y+z)=x+y+z\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{x}{y+z}(y+z)+\frac{y^2}{z+x}+\frac{y}{z+x}(z+x)+\frac{z^2}{x+y}+\frac{z}{x+y}(x+y)=x+y+z\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+(x+y+z)=x+y+z\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Vậy $M=0$
\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right).\left(x+y+z\right)=x+y+z\)
\(\Rightarrow\frac{x^2+x\left(z+x\right)}{y+z}+\frac{y^2+y\left(x+z\right)}{x+z}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)
quy đồng cái biểu thức =1 ta có
(x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x))/(y+z)(z+x)(x+y)=1
suy ra x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)=(y+z)(z+x)(x+y)
x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)-(y+z)(z+x)(x+y)=0
x^3+y^3+z^3+xyz=0(bước này bạn tự tính rút gọn nhan)
xyz=-x^3-y^3-z^3
quy đồng A ta có (x^2(z+x)(x+y)+y^2(y+z)(x+y)+z^2(y+z)(z+x))/(y+z)(z+x)(x+y)
mik chỉ xét tử thôi nhan cộng lại hết ta có
x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3
thế xyz=-x^3-y^3-z^3 ta có
=x^4+y^4+z^4+x(-x^3-y^3-z^3)+y(-x^3-y^3-z^3)+z(-x^3-y^3-z^3)+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3
rút gọn sẽ bằng 0
suy ra A=0
\(\Rightarrow\left(\frac{x}{x+y}+\frac{y}{z+x}+\frac{z}{x+y}\right)\cdot\left(x+y+z\right)=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{y^2}{z+x}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{z^2}{x+y}+\frac{xz}{x+y}+\frac{yz}{x+y}=x+y+z\)
Rồi bạn cộng 2 phân thức 2,3 5,6 8,9 lại thì được
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{x+z}+\frac{y^2}{x+z}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
<=>\(\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{x+z}+\frac{xy+yz}{x+z}+\frac{z^2}{x+y}+\frac{xz+yz}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{x\left(y+z\right)}{y+z}+\frac{y^2}{x+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z^2}{x+y}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=>\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)