K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\)

\(\Leftrightarrow\frac{x^2+2xy+y^2-4xy}{xy\left(x+y\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)

Ta thấy : \(\orbr{\begin{cases}\left(x-y\right)^2\ge0\\xy\left(x+y\right)\ge0\end{cases}\Leftrightarrow dpcm}\)

TK MK NKA !!!

11 tháng 5 2017

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)

<=>\(\frac{x+y}{xy}>=\frac{4}{x+y}\)

<=>\(\left(x+y\right)^2>=4xy< =>\left(x-y\right)^2>=0.\)(luôn đúng)

dấu "=" xảy ra khi x=y

11 tháng 5 2017

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\frac{4xy}{xy\left(x+y\right)}\)

\(\Rightarrow\left(x+y\right)^2=4xy\)

Dấu ''='' chỉ xảy ra khi x=y=1

6 tháng 5 2022

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\)

Dấu "="⇔ \(x=y\)

28 tháng 3 2018

đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z 
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4 
thay vào vế trái ta có 
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c = 
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c) 
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c) 

Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2 
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6 
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có: 
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z 
cách này tuy biến đổi dài nhưng dễ hiểu) 
------------ 
Cách khác: 
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3 
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3 
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3 
- - - 
Côsi cho 3 số: 
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) 
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*) 
Côsi cho 3 số: 
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*) 

Lấy (1*) *(2*) ta có: 
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9 

=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4 
thay vào P ta có: 
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z 

21 tháng 4 2021

anh ơi nếu x=2;z=1;y=3 thì A=2 đâu phải là hợp số

14 tháng 2 2019

giờ mik ns ý chính nha bn

bn chứng minh bất đẳng thức 

1/x+1/y lớn hơn hoặc bằng 4/(x+y)

cm bất đẳng thức này bằng cách quy đồng rồi nhân chéo lên

rồi ra thôi

hok tốt

14 tháng 2 2019

Lời giải

Áp dụng BĐT AM-GM(Cô si) cho hai số dương:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Chia hai vế của BĐT cho 4: \(\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{x+y}^{\left(đpcm\right)}\)